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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for 

Economic Co-operation and Development (OECD) to implement an international energy programme. A basic aim of 

the IEA is to foster international co-operation among the 28 IEA participating countries and to increase energy security 

through energy research, development and demonstration in the fields of technologies for energy efficiency and 

renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates research and development in a number of areas related to energy. The mission of the Energy in 

Buildings and Communities (EBC) Programme is to develop and facilitate the integration of technologies and 

processes for energy efficiency and conservation into healthy, low emission, and sustainable buildings and 

communities, through innovation and research. (Until March 2013, the IEA-EBC Programme was known as the 

Energy in Buildings and Community Systems Programme, ECBCS.) 

The research and development strategies of the IEA-EBC Programme are derived from research drivers, national 

programmes within IEA countries, and the IEA Future Buildings Forum Think Tank Workshops. The research and 

development  (R&D) strategies of IEA-EBC aim to exploit technological opportunities to save energy in the buildings 

sector, and to remove technical obstacles to market penetration of new energy efficient technologies. The R&D 

strategies apply to residential, commercial, office buildings and community systems, and will impact the building 

industry in five focus areas for R&D activities:  

– Integrated planning and building design 

– Building energy systems 

– Building envelope 

– Community scale methods 

– Real building energy use 

The Executive Committee 

Overall control of the IEA-EBC Programme is maintained by an Executive Committee, which not only monitors 

existing projects, but also identifies new strategic areas in which collaborative efforts may be beneficial. As the 

Programme is based on a contract with the IEA, the projects are legally established as Annexes to the IEA-EBC 

Implementing Agreement. At the present time, the following projects have been initiated by the IEA-EBC Executive 

Committee, with completed projects identified by (*) and joint projects with the IEA Solar Heating and Cooling 

Technology Collaboration Programme by (☼): 

Annex 1: Load Energy Determination of Buildings (*) 

Annex 2:  Ekistics and Advanced Community Energy Systems (*) 

Annex 3:  Energy Conservation in Residential Buildings (*) 

Annex 4:  Glasgow Commercial Building Monitoring (*) 

Annex 5:  Air Infiltration and Ventilation Centre  

Annex 6:  Energy Systems and Design of Communities (*) 

Annex 7:  Local Government Energy Planning (*) 

Annex 8:  Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9:  Minimum Ventilation Rates (*) 

Annex 10:  Building HVAC System Simulation (*) 

Annex 11:  Energy Auditing (*) 

Annex 12:  Windows and Fenestration (*) 

Annex 13:  Energy Management in Hospitals (*) 

Annex 14:  Condensation and Energy (*) 
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Annex 15:  Energy Efficiency in Schools (*) 

Annex 16:  BEMS 1- User Interfaces and System Integration (*) 

Annex 17:  BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18:  Demand Controlled Ventilation Systems (*) 

Annex 19:  Low Slope Roof Systems (*) 

Annex 20:  Air Flow Patterns within Buildings (*) 

Annex 21:  Thermal Modelling (*) 

Annex 22:  Energy Efficient Communities (*) 

Annex 23:  Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24:  Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25:  Real time HVAC Simulation (*) 

Annex 26:  Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27:  Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28:  Low Energy Cooling Systems (*) 

Annex 29:  Daylight in Buildings (*) 

Annex 30:  Bringing Simulation to Application (*) 

Annex 31:  Energy-Related Environmental Impact of Buildings (*) 

Annex 32:  Integral Building Envelope Performance Assessment (*) 

Annex 33:  Advanced Local Energy Planning (*) 

Annex 34:  Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35:  Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36:  Retrofitting of Educational Buildings (*) 

Annex 37:  Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38:  ☼ Solar Sustainable Housing (*) 

Annex 39:  High Performance Insulation Systems (*) 

Annex 40:  Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems  

(FC+COGEN-SIM) (*) 

Annex 43: ☼ Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings 

(EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: ☼ Towards Net Zero Energy Solar Buildings  

Annex 53: Total Energy Use in Buildings: Analysis & Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation & Related Energy Technologies in Buildings 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance & 

Cost (RAP-RETRO) (*) 

Annex 56: Cost Effective Energy & CO2 Emissions Optimization in Building Renovation (*) 

Annex 57: Evaluation of Embodied Energy & CO2 Emissions for Building Construction (*) 

Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic 

Measurements (*) 

Annex 59: High Temperature Cooling & Low Temperature Heating in Buildings (*) 

Annex 60: New Generation Computational Tools for Building & Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62:  Ventilative Cooling (*) 

Annex 63:  Implementation of Energy Strategies in Communities (*) 

Annex 64:  LowEx Communities - Optimised Performance of Energy Supply Systems with  Energy Principles 

(*) 

Annex 65:  Long-Term Performance of Super-Insulation in Building Components and Systems (*) 

Annex 66:  Definition and Simulation of Occupant Behaviour in Buildings 
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Annex 67:  Energy Flexible Buildings 

Annex 68:  Indoor Air Quality Design and Control in Low Energy Residential Buildings 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings 

Annex 70: Building Energy Epidemiology: Analysis of Real Building Energy Use at ScaleAnnex 71: 

 Building Energy Performance Assessment Based on In-situ Measurements  

Annex 72:  Assessing Life Cycle Related Environmental Impacts Caused by Buildings 

Annex 73: Towards Net Zero Energy Public Communities 

Annex 74: Energy Endeavour 

Annex 75:  Cost-effective Strategies to Combine Energy Efficiency Measures and Renewable Energy Use in 

Building Renovation at District Level 

Annex 76: ☼ Deep Renovation of Historic Buildings towards Lowest Possible Energy Demand and CO2 

Emissions 

Annex 77:     ☼ Integrated Solutions for Daylight and Electric Lighting 

Annex 78:     Supplementing Ventilation with Gas-phase Air Cleaning, Implementation and Energy Implications 

Annex 79:     Occupant-Centric Building Design and Operation 

Annex 80:    Resilient Cooling 

Annex 81: Data-Driven Smart Buildings 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - HVAC Energy Calculation Methodologies for Non-residential Buildings 

Working Group - Cities and Communities 

Working Group - Building Energy Codes 

Working Group - International Building Materials Database 
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Management summary 
This report constitutes one of the contributions of the IEA EBC Annex 67 which aims to increase 

the knowledge, identify critical aspects and possible solutions concerning the energy flexibility 

that buildings can provide. Control strategies and algorithms were developed and together with 

components and systems these were evaluated in controlled environments. Example cases were 

selected and documented under realistic energy prices, weather conditions, user behavior and 

load profiles. 

This deliverable contains fifteen chapters with twelve cases (shown in Table 2). The Introduction 

summarizes the investigation of the Energy Flexibility potential in different buildings and contexts. 

Following a literature review of applied and tested control is presented that show potential for 

providing demand side flexibility in residential or commercial buildings. The further chapters 

presents each a case study that discuss their methodology to achieve Energy Flexibility and the 

obtained results. Chapters 4-15 with case studies are structured to include an introduction, control 

scope, methodology, implementation, results and a conclusion. In total, twelve authors have 

contributed to different parts of the report (shown in Table 2).  

Reading guide 

This section provides a guide to find useful information regarding the case studies presented in 

the next sections. The features are grouped in five areas: Building typology, Energy system, 

Source of flexibility, Control system and what Results based on. These five areas are further 

subdivided in to different technologies which are briefly explained in Table 1. Table 2 helps the 

reader in finding the examples/features of most interest. 

The case studies describe results from investigations applying different boundary conditions 

(weather, energy prices, etc.) and constrains (use of buildings, comfort range, etc.) so the results 

may differ between the examples or even contradict in some cases. 

Table 1 The features of the different case studies of Tables 2. 

 Icon Technology Explanation 

Building 

typology 

 

Single-family house Only one single house or a flat is considered 

 

Multi-family house 
The considered building is a multi-family building with a 

number of flats 

 

Non-residential building 
These buildings are in this report offices or multi-use 

e.g. university buildings 

 

Cluster of buildings 

The flexibility of several buildings are considered at an 

aggregated level. The buildings can either be located 

physically next to each other or not be physically 

connected but have the same aggregator controlling 

their energy flexibility – e.g. buildings with the same 
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 Icon Technology Explanation 

type of heating system e.g. a heat pump, and are 

controlled as a group   

Energy 

system 

 

Heat pump 
The utilized heat pumps are located in the buildings and 

may both be ground source or air source heat pumps 

 

District heating 

Is considered in the sense, that the building(s) heat 

demand is covered by district heating via typically a 

heat exchanger in the building 

 

Other HVAC system 
This includes any other ventilation and/or cooling 

systems 

 

PV 

PV systems located at the building make the building a 

prosumer, which may put extra stress on the grid when 

they export electricity to the grid 

Source of 

flexibility 

 

Constructions 
The thermal mass of the building (walls, floors, ceilings 

but also furniture) are utilised for storage of heat 

 

Thermal storage 

Thermal storage are here both DHW tanks, buffer tanks 

in space heating and cooling systems but also 

swimming pools or PCM storage 

 

Battery 

Batteries may both be a stationary battery in the 

building (e.g. in connection with a PV system) or the 

battery of an electrical vehicle owned by the user of the 

building 

 

Fuel switch 

Energy flexibility obtained in a building, which has two 

or more energy systems covering the same demand – 

e.g. a gas boiler and a heat pump 

Control 

system 

 

Rule based 

Traditional control where the energy service systems 

are controlled by a set of predefined rules. A traditional 

PI thermostat is a simple rule based controller 

 

Model based 

The controller is based on a model of the energy 

demand of the building in the form of a white box model 

(e.g. TRNSYS), a grey box model (typically a low order 

RC (resistance-capacitance) model) or a black box 

model (where the model is generated from 

measurements and the parameters of the model give no 

direct physical meaning). Model based controllers give 

the possibility of applying forecasts and can thereby 

make them more efficient but also more complex 

Results 

based on 

 

Simulations 

The results of the example/teaser are based on 

simulations using typically white box modelling but can 

also be based on grey and black box models 

 

Measurements 

The obtained results are from measurements on real 

building or from test facilities utilizing hardware-in-the 

loop where parts of the test are real physical components 

while the building and weather are simulated 
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Twelve case studies (listed in Table 2) around the world (Denmark , Belgium, Finland, Spain, 

China, Germany, Norway, Netherlands, Ireland and Canada) were developed in order to 

demonstrate control strategies and algorithms implementation that can provide Energy Flexibility 

in buildings. 

Table 2 Case studies. 

Case 

study 

Name Managed by Location 

1 Multi-objective genetic algorithm for model predictive 

control in buildings 

University of Southern 

Denmark 

Denmark 

2 Deep reinforcement learning for optimal control of 

space heating 

Enervalis and KU 

Leuven 

Belgium 

3 A Model Predictive Controller for Multiple-Source 

Energy Flexibility in Buildings 

Technical Research 

Centre of Finland Ltd 

Finland 

4 Model predictive control for carbon emissions 

reduction in residential cooling loads 

Catalonia Institute for 

Energy Research 

Spain 

5 Investigation of the Energy Flexibility of  a residential 

net-zero energy building involved with the dynamic 

operations of hybrid energy storages and various 

energy conversion strategies 

The Hong Kong 

Polytechnic University 

China 

6 Rule-based load shifting with heat pumps for single 

family houses 

Fraunhofer IEE Germany 

7 Predictive rule-based control to perform heating 

demand response in Norwegian residential buildings 

Norwegian University of 

Science and Technology 

Norway 

8 CO2-aware heating of indoor swimming Technical University of 

Denmark 

Denmark 

9 Economic model predictive control for demand 

flexibility of a residential building 

Eindhoven University of 

Technology 

Netherlands 

10 Implementation of demand response strategies in a 

multi-purpose commercial building 

University College 

Dublin 

Ireland 

11 Experimental assessment of Energy Flexibility 

potential of a zone with radiant floor heating system 

Concordia University Canada 

12 Aggregation of Energy Flexibility of commercial 

buildings 

University College 

Dublin 

Ireland 



 

 i 

Table 3 Examples of how to obtain Energy Flexibility from buildings. 
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4   X   X X  X    X X X X 

5 X    X    X     X X  

6 X    X X X X  X X  X X X  

7 X X   X    X X    X X  

8 X    X   X   X  X  X  

9 X    X    X X   X  X  

10 X      X  X X   X  X  
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Abbreviations 

 

Abbreviations Meaning 

ACH Air changes per hour 

ADR Active Demand Response 

AEEF Available Electrical Energy Flexibility  

AHU Air handling unit 

ANN Artificial neural network 

APX Amsterdam Power Exchange 

BAU Business-as-usual 

BCVTB Building Controls Virtual Test Bed 

BIM Building information modelling 

BMS Building Management System 

BOS Building Operation System 

BZ Bidding zone 

CA Concern Agents 

CAV Constant Air Volume 

CEM Cross entropy method 

CHP Co-generation of Heat and Power 

CI Carbon intensity 

CIBSE Chartered Institute of Building Service Engineers 

COP Coefficient Of Performance 

CS Control strategy 

CSC Control strategy carbon 

CSP Control strategy price 

CWT Chilled Water Temperature 

D-DNFQI  Double deep neural fitted Q iteration 
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Abbreviations Meaning 

DHW Domestic Hot Water 

DP Dynamic Programming 

DR Demand Response 

DSO Distribution System Operator 

EH  Electric Heating 

EMPC Economic Model Predictive Control 

EMS  Energy Management System 

ER Electric radiator 

ERL EnergyPlus Runtime Language  

ETP Equivalent thermal parameter (model)  

EW External wall 

FCU Fan Coil Unit 

FF Flexibility Factor 

FMI Functional Mock-Up Interface 

G Goodness Of Fit 

GA Genetic algorithm 

GHG Greenhouse Gas 

GSA  Global Setpoint Adjustment  

GSHP  Ground-Source Heat Pump 

GTH Green Tech House 

HCT High Carbon threshold 

HDS Heat distribution system 

HP Heat Pump 

HVAC Heating, Ventilation and Air Conditioning 

HWST  Hot-Water Storage Tank 

IAQ Indoor Air Quality 
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Abbreviations Meaning 

ICT Information and Communications Technology 

IW Internal wall 

LCT Low carbon threshold 

MA Manager Agent 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MBRL Model-based reinforcement learning 

MDP Markov Decision Process  

MEF Marginal Emissions Factor 

MFRL Model-free reinforcement learning 

MOGA Multi-Objective Genetic Algorithm 

MPC Model Predictive Control 

PER  Primary energy ratio 

PH Passive house 

PI Proportional Integral 

PIR Passive InfraRed 

PMV Predicted Mean Vote 

PPD Predicted Percentage of Dissatisfied 

PRBC Predictive rule-based control 

PV Photovoltaics 

PZTC Perimeter Zone Test Cell 

RE Renewable Energy 

RBC Rule-Based Control 

RC Resistance-Capacitance 

RL Reinforcement learning 

RLS Recursive Least Squares  



 

 10 

Abbreviations Meaning 

RMSE Root Mean Square Error 

S Safety factor 

SC Space Cooling 

SLLS Student Learning Leisure and Sports Facility 

SLP  Successive Linear Programming 

SH  Space Heating 

SPF Seasonal performance factor 

SSEC Solar Simulator Environmental Chamber 

TES Thermal Energy Storage 

TEK10 Norwegian building standard 

TM Temperature measurement 

TOU Time Of Use 

TRNSYS Transient System Simulation Tool 

TSE Thermal Energy Storage 

TSP Temperature SetPoint 

VAV Variable Air Volume 

VSHP Variable Speed Heat Pump 

ZEB Zero emission building 
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1 Introduction to Annex 67 

Substantial and unprecedented reductions in carbon emissions are required if the worst effects of 

climate change are to be avoided. A major paradigmatic shift is, therefore, needed in the way heat 

and electricity are generated and consumed in general, and in the case of buildings and communities 

in particular. The reduction in carbon emissions can be achieved by firstly: reducing the energy 

demand as a result of energy efficiency improvements and secondly: covering the remaining energy 

demand by renewable energy sources. Applying flexibility to the energy consumption is just as 

important as energy efficiency improvements. Energy flexibility is necessary due to the large-scale 

integration of central as well as decentralized energy conversion systems based on renewable 

primary energy resources, which is a key component of the national and international roadmaps to 

a transition towards sustainable energy systems where the reduction of fuel poverty and CO2-

equivalent emissions are top priorities.  

In many countries, the share of renewable energy sources (RES) is increasing parallel with an 

extensive electrification of demands, where the replacement of traditional cars with electrical vehicles 

or the displacement of fossil fuel heating systems, such as gas or oil boilers, with energy efficient 

heat pumps, are common examples. These changes, on both the demand and supply sides, impose 

new challenges to the management of energy systems, such as the variability and limited control of 

energy supply from renewables or the increasing load variations over the day. The electrification of 

the energy systems also threatens to exceed already strained limits in peak demand.  

A paradigm shift is, thus, required away from existing systems, where energy supply always follows 

demand, to a system where the demand side considers available supply. Taking this into 

consideration, flexible energy systems should play an important part in the holistic solution. Flexible 

energy systems overcome the traditional centralized production, transport and distribution-oriented 

approach, by integrating decentralized storage and demand response into the energy market. In this 

context, strategies to ensure the security and reliability of energy supply involve simultaneous 

coordination of distributed energy resources (DERs), energy storage and flexible schedulable loads 

connected to smart distribution networks (electrical as well as thermal grids).  

Looking further into the future, the ambition towards net zero energy buildings (NZEB) imposes new 

challenges as buildings not only consume, but also generate heat and power locally. Such buildings 

are commonly called prosumers, which are able to share excess power and heat with other 

consumers in the nearby energy networks. Consequently, the energy networks must consider the 

demand of both heat and electricity as well as the local energy generation. If not, it may result in 

limitations of the amount of exported energy for building owners to avoid power quality problems; for 

example, Germany has already enforced restrictions on private PV generation exported to the grid. 

Furthermore, today the distribution grid is often sized based on buildings that are heated by sources 

other than electricity. However, the transition to a renewable energy system will, in many areas, lead 

to an increase in electrical heating, by heat pumps for example, which will lead to an increase in the 

electricity demand even if the foreseen reduction in the space heating demand via energy renovation 

is realized. The expected penetration of electrical vehicles will increase the loads in the distribution 

grids, but they may also be used for load shifting by using their batteries; they could in effect become 

mobile storage systems. All these factors will, in most distribution grids, call for major reinforcement 

of the existing grids or for a more intelligent way of consuming electricity in order to avoid congestion 

problems. The latter approach is holistically referred to as a ‘Smart Grid’ (or as a Smart Energy 

Network, when energy carriers other than electricity are considered as well) where both demand and 
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local production are controlled to stabilize the energy networks and thereby lead to a better 

exploitation of the available renewable energy sources towards a decarbonisation of the building 

stock. Buildings are, therefore, expected to have a pivotal role in the development of future Smart 

Grids/Energy networks, by providing Energy Flexibility services.  

As buildings account for approximately 40 % of the annual energy use worldwide, they will need to 

play a significant role in providing a safe and efficient operation of the future energy system. They 

have the potential to offer significant flexibility services to the energy systems by intelligent control 

of their thermal and electric energy loads. More specifically, a large part of the buildings’ energy 

demand may be shifted in time and may thus significantly contribute to increasing flexibility of the 

demand in the energy system. In particular, the thermal part of the energy demand, e.g. space 

heating/cooling, ventilation, domestic hot water, but also hot water for washing machines, 

dishwashers and heat to tumble dryers, can be shifted. Additionally, the demand from other devices 

like electrical vehicles or pool pumps, can also be controlled to provide Energy Flexibility. 

All buildings have thermal mass embedded in their construction elements, which makes it possible 

to store a certain amount of heat and thereby postpone heating or cooling from periods with low RES 

in the networks to periods with excess RES in the networks without jeopardizing the thermal comfort. 

The amount of thermal storage available and how quickly it can be charged and discharged affect 

how this thermal storage can be used to offer flexibility. Additionally, many buildings may also contain 

different kinds of discrete storage (e.g. water tanks and storage heaters) that can potentially 

contribute to the Energy Flexibility of the buildings. A simple example of a discrete storage system 

is the domestic hot water tank, which can be pre-heated before a fall in available power. From these 

examples, it is evident that the type and amount of flexibility that can be offered will vary among 

buildings. A key challenge is, therefore, to establish a uniform framework that describes how 

flexibility can be offered in terms of quantity and quality. 

Storage (thermal or electrical) is often necessary in order to obtain energy flexibility. However, 

storage has “roundtrip” energy conversion losses, which may lead to a decrease in the energy 

efficiency in the single building. But as energy flexibility ensures a higher utilization of the installed 

RES, the efficiency of the overall energy system will increase. A decrease in efficiency will mainly 

be seen in well-controlled buildings, however, most buildings are not well-controlled. In the latter 

case, the introduction of energy flexibility may typically lead to a more optimal control of the buildings 

and in this way simultaneously increase the energy efficiency of the buildings. 

Various investigations of buildings in the Smart Grid context have been carried out to date. However, 

research on how Energy Flexibility in buildings can actively participate the future energy system and 

local energy communities, and thereby facilitate large penetration of renewable energy sources and 

the increasing electrification of demand, is still in its early stages. The investigations have either 

focused on how to control a single component - often simple on/off controlled - or have focused on 

simulations for defining indicators for Energy Flexibility, rather than on how to optimize the Energy 

Flexibility of the buildings themselves.  

The concept of flexible loads, demand side management and peak shaving is of course not new, as 

demand response already in the 1970s was utilized in some power grids. Although the concept is 

not new, before now there was no overview or insight into how much Energy Flexibility different types 

of building and their usage may be able to offer to the future energy systems. This was the main, 

although not sole, reason why IEA EBC Annex 67 Energy Flexible Buildings was initiated. 
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1.1 IEA EBC Annex 67 

The aim of IEA EBC Annex 67 was to increase the knowledge, identify critical aspects and possible 

solutions concerning the Energy Flexibility that buildings can provide, plus the means to exploit and 

control this flexibility. In addition to these technical aims, Annex 67 also sought to understand all 

stakeholder perspectives - from users to utilities - on Energy Flexibility, as these are a potential 

barrier to success. This knowledge is crucial for ensuring that the Energy Flexibility of buildings is 

incorporated into future Smart Energy systems, and thereby facilitating the transition towards a fossil 

free energy system. The obtained knowledge is also important when developing business cases that 

will utilize building Energy Flexibility in future energy systems – considering that utilization of Energy 

Flexibility in buildings may reduce costly upgrades of distribution grids. 

The work of IEA EBC Annex 67 was divided into three main areas:  

- terminology and characterization of Energy Flexibility in buildings 

- determination of the available Energy Flexibility of devices, buildings and clusters of buildings 

- demonstration of and stakeholder’s perspective on Energy Flexible buildings 

1.1.1 Terminology for and characterization of Energy Flexibility in buildings 

A common terminology is important in order to communicate a building’s or a cluster of buildings’ 

ability to provide Energy Flexible services to the grid. The available Energy Flexibility is often defined 

by a set of generally static Key Performance Indicators. However, the useful Energy Flexibility will 

be influenced by internal factors such as the form or function of a building, and external factors, such 

as local climatic conditions and the composition and capacity of the local energy grids. There is, 

therefore, a need for a dynamic approach in order to understand the services a building can provide 

to a specific energy grid. A methodology for such a dynamic approach has been developed during 

the course of IEA EBC Annex 67.  

The findings in the area of terminology and characterization of Energy Flexibility in buildings are 

reported in the deliverable “Characterization of Energy Flexibility in Buildings” mentioned below. 

1.1.2 Determination of the available Energy Flexibility of devices, buildings 

and clusters of buildings 

Simulation is a powerful tool when investigating the possible Energy Flexibility in buildings. In IEA 

EBC Annex 67, different simulation tools have been applied on different building types and Common 

Exercises have been carried out on well-defined case studies. This approach increased the common 

understanding of Energy Flexibility in buildings and was useful for the development of a common 

terminology.  

Simulations are very effective to quickly test different control strategies, among which some may be 

more realistic than others. Control strategies and the combination of components were, therefore, 

also tested in test facilities under controllable, yet realistic, conditions. Hardware-in-the-loop 

concepts were utilized at several test facilities, where, for example, a heat pump and other 

components were tested combined with the energy demand of virtual buildings and exposed to 

virtual weather and grid conditions.  
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The results of the investigations are described in several of the below mentioned publications by IEA 

EBC Annex 67. 

1.1.3 Demonstration of and stakeholders perspective on Energy Flexible 

Buildings 

In order to be able to convince policy makers, energy utilities and grid operators, aggregators, the 

building industry and consumers about the benefits of buildings offering Energy Flexibility to the 

future energy systems, proof of concept based on demonstrations in real buildings is crucial. 

Example cases of obtaining Energy Flexibility in real buildings have, therefore, been investigated 

and reported in reports, articles and papers and as examples in the deliverables of IEA EBC Annex 

67. 

When utilizing the Energy Flexibility in buildings, the comfort, economy and normal operations of the 

buildings can be influenced. If the owner, facility manager and/or users of a building are not 

interested in in exploiting Energy Flexibility to increase building smartness, it does not matter how 

energy flexible the building is, as the building will not be an asset for the local energy infrastructure. 

However, the involvement of utilities, regulators and other stakeholders, for example, building 

automation providers, can provide incentives and increase awareness of and thereby participation 

in providing Energy Flexibility. It is, therefore, very important to understand which barriers exist for 

the stakeholders involved in the Energy Flexible buildings and how they may be motivated to 

contribute with Energy Flexibility in buildings to stabilize the future energy grids. Investigating the 

barriers and benefits for stakeholders is, therefore, of paramount importance and work was 

completed in IEA EBC Annex 67 to understand these in more detail. Findings from this work are 

described in the report “Stakeholder perspectives on Energy Flexible Buildings” mentioned below. 

1.1.4 Deliverables from IEA EBC Annex 67 

Many reports, articles and conference papers have been published by IEA EBC Annex 67 

participants. These can be found on annex67.org/Publications.  

The main publications by IEA EBC Annex 67 are, however, the following reports, which all may be 

found on annex67.org/Publications/Deliverables. 

Principles of Energy Flexible Buildings summarizes the main findings of Annex 67 and targets all 

interested in what Energy Flexibility in buildings is, how it can be controlled, and which services it 

may provide.  

Characterization of Energy Flexibility in Buildings presents the terminology around Energy 

Flexibility, the indicators used to evaluate the flexibility potential and how to characterize and label 

Energy Flexibility.  

Stakeholder perspectives on Energy Flexible buildings displays the view point of different types 

of stakeholders towards Energy Flexible Buildings.  

Control strategies and algorithms for obtaining Energy Flexibility in buildings reviews and 

gives examples on control strategies for Energy Flexibility in buildings. 
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Experimental facilities and methods for assessing Energy Flexibility in buildings describes 

several test facilities including experiments related to Energy Flexibility and draws recommendations 

for future testing activities.  

Examples of Energy Flexibility in buildings summarizes different examples on how to obtain 

Energy Flexible Buildings. 

Project Summary Report brief summary of the outcome of Annex 67.  
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2 Introduction to the report 

The development needs by new socio-economic requirements have led to a substantial increase in 

the energy consumption and the environmental concerns in recent years. Buildings are one of the 

fastest growing energy consumers, responsible for approximately 50 % of the greenhouse gas 

(GHG) emissions (European Environment Agency (EEA), 2004). On the other hand, the energy 

production sector is struggling to meet the required demand. In this context, efforts are being directed 

on the flexibility of energy demand for efficient buildings, by assuring the operational needs with the 

minimum possible energy cost and environmental protection (Doukas, et al., 2007). 

One of the greatest difficulties of energy efficient buildings is to combine the reduction in power 

consumption with the costumers’ comfort. Although buildings account for approximately 40 % of the 

global energy consumption (World Business Council for Sustainable Development, 2008), this 

number can increase significantly in order to address indoor environment comfort demands, for 

example for heating, cooling, lighting, ventilation, and office equipment (Wang, et al., 2012).  

In order to reduce GHG emissions in the energy sector, sustainable and renewable sources are 

being proposed because of their social and environmental benefits, such as the reduction of air 

pollutants and declining energy costs. As a result, challenges such as high intermittence of 

generation and storage capacities have to be addressed. The built-in Energy Flexibility in buildings 

may be utilized for stabilizing the energy grid. 

As a natural consequence, buildings are gradually moving towards modernizations that increase 

their performance. Automation of new and existing processes using state-of-the-art technologies in 

remote sensing operations, communication, control and information technology is essential. The 

purpose is to align automation and optimization to the actions of all elements of a building in order 

to provide a sustainable, economic and secure energy supply.  

Energy flexibility of buildings is a focus area in many countries directives because society is facing 

an urgent need to find new innovative methodologies and tools to guarantee the required demand 

for the future energy consumers. The ability to manage the demand and generation according to 

local climate conditions, user needs and grid requirements allows demand side management, load 

control and thereby demand response based on the requirements of the surrounding grids. 

In this way, the search for attractive solutions grows in order to control building operations due to 

their inherent flexibility, considering relevant factors such as occupant behavior patterns, weather 

conditions, thermal properties and their complex interactions, without compromising the occupants' 

comfort (Maasoumy, et al., 2014). In order to use the potential of both commercial and residential 

buildings as providers of flexibility to the smart grid, it is fundamental to redesign the way a building 

and its HVAC system is controlled. 

Since buildings are unpredictable consumers of electrical energy (Zavala, 2013), optimization-based 

control is a key technology in next-generation energy-efficient building systems. Traditional control 

strategies are still being used even with the development of better alternatives presented over the 

past years. In addition, more focus needs to be done on building-wide optimization, exploiting the 

entire system in order to achieve significant energy savings (Zavala, et al., 2010). 

Furthermore, the building-wide optimization is a non-linear and multivariate problem having no 

guarantee of a unique solution where competitive objectives arise in practice, involving 

interdependent issues distributed among multiple building climate zones. In this way, the coordinated 
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operation of interconnected subsystems performing autonomous control is essential to achieve the 

overall system goals. 

In this context, where the control process of buildings should be optimized, there is a need to seek 

new methods and technologies that provide fast and optimized management and control. 

Appropriate methods must be efficient and robust, performing inter-context considerations among 

each building zone micro-climate and ensuring reliability and security in several operating conditions 

of the system (Zavala, et al., 2010). Other approaches are described in literature and it are the focus 

of the Annex 67 technical report (Finck, et al., 2018), which lists different control possibilities. A 

summary of (Finck et al, 2018) is given in the next chapter. 

In order to achieve an emerging overall optimization of the building energy performance, control 

architectures must be developed, enabling the estimation of weather, occupancy behavior trends 

and energy consumption within each building zone. More importantly, control methods are multi-

variable systems that can exploit the interactions between states to optimize performance, making 

buildings more adaptive to system variations and reducing the energy and environment cost. In 

addition, the sensor information helps to better understand the building performance and the 

provided services, like air-conditioning, lighting and heating systems and their equivalent 

parameters, as well as its indoor environmental quality and comfort level in a real-time format. 

In order to model/simulate the Energy Flexibility in buildings it is necessary to define control 

strategies. Different studies described in this report investigates algorithms for efficient 

implementation of strategies for realizing the Energy Flexibility in buildings, including strategies for 

storage capacities (thermal and electrical) and local renewables sources, like PV panels. Different 

control algorithms and strategies are introduced, ranging from simple low-level control of single 

devices over complex control of several devices to decision making based on different types of 

forecast (weather, prices, occupancy). 

Currently, there is no overview or insight into the types and usages of control strategies on future 

energy systems. The aim of this report is thus to increase knowledge on and demonstrate which 

flexibility services buildings can provide for the energy grids, and to identify critical aspects and 

possible solutions to manage Energy Flexibility. 
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3 Review of applied and tested control 
possibilities for Energy Flexibility in 
buildings 
Christian Finck, Eindhoven University of Technology, The Netherlands,  

 Paul Beagon, School of Mech. and Materials Eng., UCD, Dublin, Ireland 

John Clauß, Norwegian University of Science and Technology, Norway 

Thibault Péan, Catalonia Institute for Energy Research, Barcelona, Spain 

Pierre J.C. Vogler-Finck, Neogrid Technologies ApS / Aalborg University, Denmark  

Kun Zhang, Polytechnique Montreal, Canada 

 
The here presented literature research aims to present control strategies that show potential for 

providing demand side flexibility in residential or commercial buildings. The control techniques and 

strategies discussed here focus on heating and cooling systems including heat pumps and thermal 

energy storage. 

3.1 Terminology of control methods 

There are two main types of control: (1) control of a single component, also known as local control, 

and (2) control of a whole energy system, also known as supervisory control. The local controller 

makes sure that the process is stable and a proper setpoint is kept at all times, whereas the 

supervisory controller coordinates all the local controllers in a way that the overall operation of the 

energy system works smoothly (Naidu & Rieger 2011a). 

Control methods can be divided into hard control, soft control and hybrid control. Naidu et al. (Naidu 

& Rieger 2011a) include classical controls in hard controls, whereas Afram et al. (Afram & Janabi-

Sharifi 2014) see classical controls as a distinct group of HVAC control methods. Dounis et al. 

(Dounis & Caraiscos 2009) on the other hand only distinguish between classical controllers and 

optimal, predictive and adaptive controllers. An overview of different HVAC control methods is given 

in Figure 3.1. 

Classical control refers to the most commonly used control techniques, such as on/off control, P, PI 

or PID control. An on/off controller regulates a process within a predefined lower and upper threshold 

so that the process stays within these boundaries. P, PI and PID controllers modulate a controlled 

variable by using error dynamics, so that accurate control is achieved. Research related to PID 

controllers focuses on auto-tuning or optimal tuning methods of these controllers (Afram & Janabi-

Sharifi 2014). 

Hard controllers follow the theory of control systems based on nonlinear control, robust control, 

optimal control, adaptive control and Model Predictive Control (MPC) (Naidu & Rieger 2011a), 

(Afram & Janabi-Sharifi 2014). Hard controllers are usually rather straightforward to analyze. They 

have a predictable overall behavior and stability and usually a low to moderate computational burden 

of practical algorithms (Ovaska et al. 2002). 
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Soft control systems are based on fuzzy logic, neural networks or genetic algorithms. 

 

Figure 3.1 Overview of control methods for HVAC systems (Afram & Janabi-Sharifi 2014). 

Hybrid controls are a combination of hard and soft control techniques and benefit from the 

advantages of each of them. The soft control is usually applied for supervisory control, whereas the 

hard controller is used for local control (Afram & Janabi-Sharifi 2014) even though MPC can be used 

for supervisory control. 

3.2 Strengths and weaknesses of different control methods 

On/off controllers are not able to control dynamic processes with time delays well. A good 

performance of PID controllers is ensured only if the operating conditions do not vary from the tuning 

conditions (Afram & Janabi-Sharifi 2014). Gain-Scheduling PID show improved stability compared 

to “normal” PID controllers (Leith & Leithead 2000), but it is necessary to spot the linear regions and 

to develop a logic for switching the regions. Manual tuning of the PID controller is required and can 

be laborious. 
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Table 3.1  Summary of the most common control methods. 

Type of 
controller 

Working principle Implementation maturity References 

Thermostatic 
on/off control 

Regulates a process within a predefined lower and upper threshold so that 
the process stays within these boundaries 

State-of-the-art in buildings 
(Afram & Janabi-Sharifi 2014), (Yu et 
al. 2015), (Dounis & Caraiscos 2009), 
(Naidu & Rieger 2011a) 

P, PI, PID control Modulates a controlled variable by taking into account error dynamics State-of-the-art in buildings 
(Afram & Janabi-Sharifi 2014), (Yu et 
al. 2015), (Dounis & Caraiscos 2009), 
(Naidu & Rieger 2011a) 

Gain Scheduling 
PID 

Controls non-linear systems by a family of linear controls which are used to 
control different operating points of the non-linear system 

State-of-the-art for hydronic-radiator-
based HVAC systems 

(Afram & Janabi-Sharifi 2014), (Afram 
& Janabi-Sharifi 2014), (Leith & 
Leithead 2000) 

Non-linear 
A control law (derived from Lyapunov´s stability theory, feedback linearization 
and adaptive control techniques) for reaching a stable state of the non-linear 
system while keeping the control objectives 

State-of-the-art for AHUs and cross-flow 
water to air heat exchanger 

(Afram & Janabi-Sharifi 2014) 

Robust 
Controller works well for changing parameters as well as time-varying 
disturbances / Considers model uncertainty and non-linearities of the system 

State-of-the-art for supply air 
temperature, supply airflow rate and 
zone temperature control 

(Afram & Janabi-Sharifi 2014), (Naidu 
& Rieger 2011a) 

Optimal 
Solves an optimization problem (optimizing a cost function)  minimization of 
energy consumption and control effort, maximizing thermal comfort 

State-of-the-art for active TES, energy 
optimization for HVAC systems, VAV 
system control, building heating and 
cooling control 

(Afram & Janabi-Sharifi 2014), (Naidu 
& Rieger 2011a) 

Adaptive 
Controller learns to adapt to changes and learns from the characteristics of a 
building or/and environment by self-regulation 

Used for single cases, but not 
widespread 

Used for AHUs with VAV 

(Dounis & Caraiscos 2009), (Naidu & 
Rieger 2011a), (Yu et al. 2015) 

MPC 
Applies a system model for predicting future system states and optimizes a 
cost function over a sliding planning horizon / takes disturbances and 
constraints into account 

Applied at building design stage, but not 
yet widespread for practical operation 

(Afram & Janabi-Sharifi 2014), (Naidu 
& Rieger 2011a) 

Neural Network 

A mathematical representation of neurons relating inputs and outputs as a 
huge network / Black-box modelling technique / A controller which is 
tuned/trained on the performance data of a system / Fits a non-linear 
mathematical model to the historical data 

For fan control of an air-cooled chiller 
and for AC setback time based on the 
outdoor temperature 

(Afram & Janabi-Sharifi 2014), (Naidu 
& Rieger 2011b) 

Fuzzy Logic 
Control actions as if-then-else statement / Methodology to represent human 
knowledge and reasoning by remembering rules and functions / Can be 
applied as supervisory control in combination with a local PID controller 

Used in AHUs 
(Afram & Janabi-Sharifi 2014), (Naidu 
& Rieger 2011b)  
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Hard controllers are a common technique in control system design. Nonlinear control is effective but 

requires a rather complex mathematical analysis when designing the controller as well as an 

identification of stable states. Optimal and robust control can handle time-varying parameters and 

disturbances, but robustness is difficult to obtain because of varying conditions for HVAC systems 

in buildings. According to (Afram & Janabi-Sharifi 2014) specification of additional parameters is 

required for hard controllers and thus an integration in HVAC systems may be difficult or impractical. 

Soft controllers are not very common in real building applications. Neural-networks-based control 

systems need an extensive amount of historical data for training purposes, in order to cover a wide 

range of operating conditions. Similarly, fuzzy logic controllers require an extensive knowledge of 

the building operation under different conditions. 

Hybrid controllers inherit the benefits and weaknesses of both hard control and soft control systems.  

3.3 Control strategies for heating and cooling using MPC 

Some of the main challenges facing a HVAC system are non-linear dynamics, time-varying 

dynamics, time-varying disturbances and supervisory control. MPC is a control method that 

overcomes these problems. 

(Afram & Janabi-Sharifi 2014) summarize the main features of MPC: 

- MPC is not a corrective control, but anticipates future system evolution 

- An integrated disturbance model can handle disturbances in an explicit manner  

- It has the ability to explicitly handle uncertainties and constraints 

- It is capable of dealing with processes with time delays 

- Energy saving strategies can be integrated in the controller formulation 

- Multiple objectives can be achieved by using adequate formulations of the cost function 

- MPC can be used for supervisory as well as local control 

- Explicitly includes the prediction of occupant behavior, equipment use and weather conditions 
The reviews of (Afram & Janabi-Sharifi 2014), (Dounis & Caraiscos 2009), and (Naidu & Rieger 

2011a), (Naidu & Rieger 2011b) include several metrics for comparing the performances of different 

controllers. However, they do not consider the potential for flexibility deployment in detail. 

The research on MPC has intensified during the last decade. It is well understood and proven that 

this control method can achieve energy savings while maintaining or even improving thermal comfort 

in buildings. Researchers show different approaches for applying MPC for controlling HVAC systems 

in buildings in combination with thermal energy storages in order to deploy the demand side flexibility 

that a building may offer. 

(Huang 2011) shows that the control signal for zone temperature regulation is much smoother when 

using a MPC compared to a PI controller. Zone temperature regulation has also been investigated 

by (Moroşan et al. 2010) who simulated the performance of a PI controller and a distributed MPC. 

The MPC achieved 13 % energy savings and a 37 % improvement of the thermal comfort. More 

studies are presented in (Afram & Janabi-Sharifi 2014).   

The zone temperature is also the typical control variable in experiments. (Hong LüLei JiaShulan 

KongZhaosheng Zhang 2007) implemented a MPC into a HVAC system and showed an improved 

robustness as well as greater tracking performance of the MPC compared to a PID controller. 
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(Aswani et al. 2012) implemented a learning-based MPC into a heat pump test facility at a university 

and showed that the energy consumption can be reduced by 30 to 70 % compared to on/off control. 

Economic MPCs (Halvgaard et al. 2012) include electricity prices from the day-ahead market into 

the cost function and suggest an optimized schedule for electricity consumption over the planning 

horizon based on these prices. Energy consumption is shifted to periods with low electricity prices. 

For instance, the controller of a heat pump can compute an optimized schedule for the compressor 

based on dynamic electricity prices as well as weather conditions (outdoor temperature and solar 

radiation). 

3.4 Control objectives, inputs, disturbances, constraints, and signals 

The aim of the applied control strategies presented in this report is to improve the Energy Flexibility, 

or implement demand-side management (DSM). However, this objective remains general, and DSM 

can take several forms, such as load-shifting, peak shaving etc. For this reason, this section intends 

to identify more precisely objectives that have been addressed by different control strategies, as well 

as other parameters taken into account (disturbances, constraints, control inputs and signals) in their 

design. 

This identification process is not always straightforward. In MPC and optimal control, the objective 

function is explicit: its expression represents the quantity that the control should optimize, for 

instance, the energy cost. This function can also contain multiple terms that represent multiple 

objectives, which are balanced with appropriate weights. In rule-based controls (RBC), the final 

objective is more difficult to identify, and is not always explicitly mentioned in the reviewed papers. 

A certain method is often analysed under different angles (impact on the energy use, comfort, 

flexibility…), without a clear statement of the goals to achieve. There can also be a short-term goal 

(e.g. shifting loads to a certain time of the day), and a more general goal on the long-term (e.g. 

enabling the integration of more RES in the grid). 

Due to the conceptual difference, the two types of control (RBC and MPC) have been separated 

when analysing their respective objectives. The constraints, control inputs, disturbances and signals 

present similarities and therefore have been reviewed jointly. It should be noted too that there is not 

always a consensus on the boundaries between these different elements, as different studies would 

address these with different approaches. For instance, comfort can be considered as an objective 

(minimize discomfort) or as a constraint (with boundaries for the indoor temperature for example). 

3.4.1 Control objectives 

In rule-based controls 
The simplest flexibility objective consists in load shifting according to a predefined fixed schedule. 

Regular daily peak periods can usually be identified in a national energy grid. The controller can 

therefore try to avoid or force the operation of the systems during fixed hours. For instance, (Lee et 

al. 2015) use set-point modulation to reduce the energy use during the grid peak hours (14:00 to 

17:00 in summer and 17:00 to 20:00 in winter). (Carvalho et al. 2015) completely shut down the heat 

pump during peak hours (9:00 to 10:30 and 18:00 to 20:30). Fixed scheduling can also be used to 

force the charging of a Thermal Energy Storage (TES) tank, like presented by (De Coninck et al. 

2010). In another study, (De Coninck et al. 2014) used clock control, raising the DHW heating set-

point from 12:00 to 16:00 in order to reduce PV curtailing losses at that time because a heat pump 
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can be run to charge the DHW storage. Overall, fixed scheduling strategies are simple and easy to 

implement, and they can already achieve a substantial performance. However, the fixed schedule 

cannot adapt to changing conditions in the daily profile of the grid. 

Another objective targeted by RBC strategies is peak shaving, i.e. the reduction of the demand peak, 

in order to support the grid operation. In these cases, the power exchange of the building with the 

grid is monitored, and thresholds can be defined both for the import and export (when a production 

unit is present, i.e. when the customer is a prosumer1) of power. When the thresholds are passed, 

an action is taken by the controller to stop or force the operation of certain elements, such as 

mechanical systems, batteries, etc., and thus limit the peak to the predefined threshold. For instance, 

(Dar et al. 2014) set an import limit of 2500 W and an export limit of 5000 W in a nZEB equipped 

with a PV system, while (De Coninck et al. 2010) present a similar “grid-load strategy”, with both 

import and export thresholds set at 3500 W. 

Certain control strategies aim at reducing the energy costs for the end-users. In general, these 

approaches rely on time-varying energy prices, and the controller aims at operating the energy-using 

systems during low-price periods, or at avoiding their operation during high-price periods. Identifying 

the thresholds for low and high-price periods therefore becomes the key elements of these RBC 

strategies. (Schibuola et al. 2015) propose two different approaches in this regard: the first one 

analyzes the price data of two entire years (2012 and 2013), and fixes thresholds based on this 

distribution. The second approach compares the current electricity price with the forecasted price 

over the next 12 hours, hence relying on prediction data rather than on past data. (Le Dréau & 

Heiselberg 2016) also based their approach on recorded past data: their thresholds were calculated 

using the first and the third quartiles from the price distribution of the two weeks prior to the current 

moment. 

Finally, other rule-based controls aim at improving the use of energy from renewable energy sources 

(RES). This can be done at the scale of the building with a local generation unit (in the case of a 

prosumer), where the objective consists in increasing self-consumption. It can also be done at the 

scale of the overall power grid, which means the control relies on the analysis of the residual load 

calculated at a national level. The methods employed can then take different forms. The heating 

systems can be switched on simply when the local PV are generating electricity (Schibuola et al. 

2015), or when this production exceeds the non-heating loads (Dar et al. 2014). Thus, a thermal 

storage is charged to temperatures which are higher than the usual set point. This leads to a better 

coincidence between production and demand. (De Coninck et al. 2014) use a different trigger for the 

activation of DSM: voltage measurement. Their study works on the assumption that an excess PV 

production induces an increase of voltage of the distribution feeder. The voltage is therefore 

monitored, and when it surpasses a defined value (around 250 V), the setpoint for the DHW tank is 

raised in order to utilize more electricity and avoid the curtailment of PV production due to inverter 

shutdown. (Miara et al. 2014) use the residual load profile at the national level to design their own 

Time Of Use (TOU) signal and thus use energy at times of low residual load. 

In optimized control and MPC 
As recalled in the introduction of this section, the objective is easier to identify for MPC 

configurations, since it is explicitly formulated in the cost function which the controller optimizes. In 

the reviewed papers, one sort of MPC clearly stands out: Economic MPC (EMPC), where the 

objective is to reduce monetary costs. This method utilizes the variation of energy prices in time to 

                                                

1 A prosumer is a customer who is both a consumer and a producer of electricity. A prosumer thus sometimes 
retrieves electricity from the grid, and sometimes feeds it into the grid. 
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perform a cost optimization. The objective function Je can for example take the following form, taken 

from (Masy et al. 2015): 

𝐽𝑒 = ∑𝑝𝑒𝑙(𝑖) �̇�𝑒𝑙(𝑖)

𝑖

 

Where 𝑊𝑒𝑙
̇  is the manipulated variable (the heat pump power in this case), 𝑝𝑒𝑙 is the electricity price 

(varying in time according to different tariffs). The optimization process then minimizes this cost 

function over the receding horizon, logically leading to monetary savings. 

Even though the formal objective is to reduce the costs, this method will implicitly result in load 

shifting towards periods of lower energy prices. Depending on how the price profile is constructed, 

this load shifting can constitute a valuable form of Energy Flexibility. A similar cost function is used 

in (De Coninck & Helsen 2016) (considering also a term for the cost of natural gas), (Halvgaard et 

al. 2012), (Ma et al. 2014), (Mendoza-Serrano & Chmielewski 2014), (Zong et al. 2012), (Santos et 

al. 2016), (Bianchini et al. 2016), (Sichilalu & Xia 2015) (including the monetary benefits of selling 

PV electricity) and (Oldewurtel et al. 2013). As it appeared from the survey, EMPC seems to be a 

dominant form of MPC in studies of Energy Flexibility in buildings. 

Comfort can also constitute an objective of MPC, or more precisely the minimization of thermal 

discomfort. The objective function can for instance take the following form, taken from (De Coninck 

& Helsen 2016): 

𝐽𝑑 =∑𝜃𝑂𝐶𝐶(𝑖)(𝑇𝑧𝑜𝑛(𝑖) − 𝑇𝑠𝑒𝑡(𝑖))
2

𝑖

 

Where 𝜃𝑂𝐶𝐶 is an occupancy factor (0 or 1), 𝑇𝑧𝑜𝑛  is the actual zone temperature, and 𝑇𝑠𝑒𝑡  is the 

tracked set-point temperature. By minimizing this term, the optimization problem will reduce the 

difference between the actual and the desired temperature (setpoint), hence improving the comfort 

conditions. (Masy et al. 2015) use the same principle but with a slightly different formulation. (Váňa 

et al. 2014) introduce two different comfort ranges in their objective function: 

𝐽𝑑 = ∑(|𝑄(𝑦𝑘 − 𝑧𝑘)|
2
2
 + |𝑄𝑐(𝑦𝑘 − 𝑧𝑘

𝑐)|2
2
) 

𝑘

 

Where 𝑦𝑘  represent the zone temperatures from system states k, 𝑧𝑘  represent soft comfort 

constraints (comfort range 1) that can be violated from time to time, while 𝑧𝑘
𝑐 represent soft comfort 

constraints (comfort range 2) that should not be violated at almost any cost. The hierarchy between 

comfort ranges 1 and 2 is realized through the weight matrices 𝑄 and 𝑄𝑐. It should be noted that 

comfort is often also implemented in the form of constraints (see following paragraph). 

In some cases, the objective function includes a term for the reduction of the energy use. For 

instance, (Sturzenegger et al. 2013) present an MPC which aims at minimising the non-renewable 

primary energy use. The formulation is the following: 

𝐽𝑝𝑒 =∑𝑐𝑘
𝑇

𝑘

𝑢𝑘 

Where 𝑐𝑘 is the cost vector element (depending on the systems efficiency) and 𝑢𝑘 the manipulated 

variables (or control inputs). 𝑐𝑘 put different weights on the energy consumption depending on the 

operating conditions, which leaves room for a minimisation of non-renewable primary energy. 
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Few articles use a term for peak shaving within their objective function. Notably (Ma et al. 2014) 

present the following formulation: 

𝐽𝑝 =∑𝐷𝑐(𝑘) 𝑚𝑎𝑥{𝑃(𝑘)}

𝑘

 

Where 𝐷𝑐 represents the peak demand cost, and P is the average power consumption during the 

time interval k. In this way, the peak power is penalized in the objective function, therefore the MPC 

will try to reduce it, leading to peak shaving. 

Reducing the CO2 intensity is another objective that may be implemented in MPC. (Dahl Knudsen & 

Petersen 2016) notably introduce the following term:  

𝐽𝑐 = ∑𝑒𝑘  𝑢𝑘
𝑘

 

Where 𝑒𝑘 is a vector representing the prediction of the CO2 intensity associated with the electricity 

production (i.e. the amount of CO2 equivalent emissions per unit of energy, expressed in g CO2eq 

/kWh). The MPC optimization will therefore intend to minimise the total CO2 emissions incurred by 

the energy used for operation of the building. 

Finally, other terms can be introduced in the objective function to increase the robustness of the 

control. They do not represent a flexibility objective on their own, but enable a smoother operation 

of the systems. For example, (Váňa et al. 2014) introduce the following term: 

𝐽𝑟 =∑𝛿

𝑘

|𝑢𝑘 − 𝑢𝑘−1 − 𝑝𝑘|
2
2
 

Where 𝛿 is a penalty factor and 𝑝𝑘 a slack variable. Introducing such terms in the objective function 

enables to avoid too drastic changes in the control inputs, and decreases the sensitivity to model 

mismatch and imperfect disturbance predictions. (Santos et al. 2016) and (Halvgaard et al. 2012) 

also introduce slack variables in order to soften the constraints imposed on the output, and thus 

enable the optimization to always find a solution outside the strict range, although at the cost of a 

certain penalty. 

Finally, it is important to mention that these different objectives can be combined in a single objective 

function. Most papers use linear combinations of the different terms, setting different weights to put 

more emphasis on certain aspects of the optimization. For instance, (Masy et al. 2015) and (De 

Coninck & Helsen 2016) present a global objective function of the form  𝐽 = 𝐽𝑒 +  𝛼 𝐽𝑑, which is an 

EMPC but also taking into account discomfort term 𝐽𝑑 with weight 𝛼.  

3.4.2 Control constraints 

As recalled by (Camacho & Bordons 2007), in practice all processes are subject to constraints: a 

heating system cannot provide more heat than its maximum thermal capacity, or a ventilation system 

cannot provide more air than the capacity of its fans. Limits can also be set for safety or constructive 

reasons. The control algorithm needs to know these boundaries in order to yield physically 

meaningful solutions to the numerical optimisation problem in the case of MPC (e.g. exclude 

negative flow rates).  
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A distinction can be made between the constraints implemented on the control inputs and the control 

outputs (or system states). The first type can always be respected, since the controller decides the 

control inputs, therefore it can choose them within the defined boundaries. In the case of MPC, the 

constraints on control outputs and states must be anticipated beforehand, since these variables 

depend on the behavior and inertia of the modelled plant, as well as disturbances. Therefore, 

imposing hard constraints on these outputs and states may lead to infeasibility of the receding 

horizon optimisation (Löfberg 2012), which is why these constraints are usually softened in practise. 

It should be kept in mind that adding constraints to a MPC problem, even though it is probably 

necessary in the kind of applications reviewed in this report, makes it impossible to find an explicit 

solution of the optimization problem; a numerical method must be used. 

The constraints on the control inputs mostly represent the physical limitations of the devices in use. 

For instance, (Dahl Knudsen & Petersen 2016) bound the power of the heating system to 0–0.5 kW, 

and (Masy et al. 2015) to 0–3 kW, which corresponds to the devices used in their respective studies. 

The MPC controller can then pick a thermal power within this interval at every time step. In 

(Oldewurtel et al. 2013) and (Sturzenegger et al. 2013), the MPC also controls blinds or ventilation, 

therefore constraints are also imposed on these systems (e.g. minimum and maximum air supply 

temperature, non-closed position for the blinds during occupancy hours to guarantee some 

daylighting). A minimum air ventilation flow rate is also implemented as a constraint for health 

reasons, to guarantee air renewal indoors. 

Time constraints can also be applied to the inputs of the control strategies. In (Le Dréau & Heiselberg 

2016), the DSM activation can only last for a predefined amount of hours. In (Carvalho et al. 2015), 

the systems can operate only between a start hour and a stop hour which are fixed beforehand. In 

(Dar et al. 2014), a minimum cycle length is imposed to the heat pump, and in (Santos et al. 2016) 

and (Halvgaard et al. 2012) the successive changes in the control inputs are penalized. These 

methods enable to avoid frequent cycling that may reduce the lifetime of the equipment. 

As for the constraints on control outputs, they include almost in every case reviewed a temperature 

comfort range (as defined in the standards EN 15251 (CEN 2007) or ASHRAE 55 (ASHRAE 2013) 

for instance). This range can apply to indoor operative temperature: for example, 22-25 °C in winter 

and 22-27 °C in summer mentioned by (Sturzenegger et al. 2013), 21-24 °C in (Ma et al. 2014), 20-

22 °C in (Masy et al. 2015). The constraints can be relaxed during non-occupancy periods: in (Hong 

et al. 2012) and (Masy et al. 2015), the problem is unconstrained when the building is not occupied. 

(Halvgaard et al. 2012) changes the constraints at night, with a minimum output temperature of 

18 °C, while this lower bound is set to 21 °C during daytime. The temperature constraint can also be 

formulated as a setpoint around which a dead-band is applied. For instance in (Schibuola et al. 

2015), an additional check is performed and actions are taken if the temperature deviates by more 

than 5 K from the setpoint. When a storage tank is used, a temperature range can also be applied 

to it, for instance when using DHW water storage that needs to be kept above 55 °C to avoid 

Legionnaire’s disease (Lee et al. 2015). In (Dar et al. 2014), the temperature constraint is 

transformed into a state of charge parameter to be kept in the buffer storage tank. 

It should be noted that in MPC, the temperature constraints can be formulated as hard constraints 

(with fixed boundaries), or as soft constraints, integrating slack variables in the objective function, 

and penalizing the violation of these constraints with a high cost (see also section on the control 

objectives). Another remark raised by (Ma et al. 2014) concerns the use of unconstrained 

temperature ranges in real building applications: it might cause problems because the actuators 

(room thermostats) might have a specific acceptable range of temperature setpoints. 
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3.4.3 Control inputs 

The control strategies act upon certain parameters, which are called control inputs (or manipulated 

variables). No major difference was found for the control inputs between RBC and optimized control. 

In the reviewed papers, the following control inputs have been identified: 

– Temperature set-points: several control strategies modulate the temperature setpoints, 

whether in the room thermostats, the supply of the systems, or in a water storage tank. 

– On/Off control: other control strategies directly force the systems to switch on or off, depending 

on the control algorithm decisions. The manipulated variable is therefore binary. 

– Thermal power: when the power of the mechanical systems can be modulated (electric heating, 

inverter-controlled heat pump…), the controller can decide to adjust it in time. This control input 

is mostly used in simulations, in practice the modulation of the thermal power can also be 

obtained through changes in the setpoints. 

3.4.4 Control disturbances 

Unknown disturbances always affect the behaviour of a controlled system. In general, RBC 

strategies take into account very few of them. On the other hand, MPC strategies need to forecast 

some of them, in order to predict the future response of the model to these disturbances, and not 

only to the control inputs. 

The most common disturbance taken into account by MPC is the outside weather conditions, since 

they will affect the heating or cooling needs of the building the most. The external temperature is 

considered in the model in almost all of the reviewed papers. A notable exception is the paper of 

(Ma et al. 2014), where the authors found out that the outside temperature did not have as much 

influence on the output as the setpoints or the heating power, and therefore neglected it. 

(Sturzenegger et al. 2013), (Oldewurtel et al. 2013), (Sichilalu & Xia 2015) and (De Coninck & Helsen 

2016) only consider the external temperature when accounting for weather conditions. Several 

papers additionally consider the solar irradiation: (Bianchini et al. 2016), (Halvgaard et al. 2012), 

(Váňa et al. 2014), and (Dahl Knudsen & Petersen 2016). Besides the external temperature and the 

solar irradiation, (Santos et al. 2016) and (Masy et al. 2015) also take into account the effects of 

wind speed. In many cases, it is assumed that the forecast of these disturbances is perfect. When 

the MPC is implemented in a real building, weather forecast is retrieved from external services or 

derived from a local measurement. 

Another major source of disturbance are the internal gains. They group the heat gains from 

occupants, appliances and equipment. Most commonly, a deterministic approach is applied, with a 

fixed schedule for these internal gains ((Váňa et al. 2014), (Bianchini et al. 2016), (Masy et al. 2015)). 

When a MPC is implemented in real buildings, other methods can be employed: an occupancy 

sensor like in (Sichilalu & Xia 2015), or deriving the internal gains from measurements of the plugs 

and lighting electricity circuits (De Coninck & Helsen 2016). 

3.4.5 Control signals 

Several external parameters can be monitored to support the decisions made by the controller. For 

simplification, it can be considered that each RBC only monitors one specific control signal, and 
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reacts upon it. Usually, a threshold is pre-set on this parameter, and when the threshold is passed, 

an action is triggered on the system. MPC strategies can monitor several signals and penalize 

excursions from a given reference profile. 

For instance, the strategies aiming at peak shaving monitor the net power exchange between the 

building and the grid, and take actions when this exchange reaches too high values ((Dar et al. 

2014), (De Coninck et al. 2010), (De Coninck et al. 2014)).  

The strategies that aim at reducing the energy cost (notably EMPC) monitor the electricity price, and 

decide to use energy or not based on how expensive the current price is considered, always taking 

into account the thermal comfort requirements ((Schibuola et al. 2015); (Le Dréau & Heiselberg 

2016)). Time-of-use electricity tariffs are applied most often, with different values for peak periods 

and off-peak periods, and sometimes with an additional medium price in-between. In other papers, 

hourly tariffs are applied, reflecting day-ahead prices on the spot market.  

The strategies which tend to increase the consumption of renewables can use different parameters 

in this objective. A measurement of the electricity production of a local generation unit can be used, 

be it a PV system like in (Dar et al. 2014) and (Schibuola et al. 2015) or a wind turbine like in (Hong 

et al. 2012). In (De Coninck et al. 2014), a voltage measurement is used, because it is assumed that 

a sub- or overproduction of electricity in the grid will result in voltage fluctuations at the feeder level. 

Finally, the residual load at local or national level can be monitored like in (Miara et al. 2014) and 

(Reynders et al. 2013).  

At the level of the local controller, weather compensation is often implemented, through the use of 

heating curves. They consist in adapting the supply temperature of the heating/cooling systems, 

according to the ambient temperature, in order to save energy. They rely therefore on an outside 

temperature sensor. 

3.5 Models supporting model-based control 

Modelling and simulation allow engineers to investigate and analyze physical systems so that design 

flaws or failures can be avoided before being deployed in practice. In the domain of building 

engineering, models are created for different reasons. Here, the discussion is focused on models for 

control purposes.  

Modelling of building systems can be generally divided into two parts: modelling of the building itself 

and modelling of mechanical and thermal systems supplying service to buildings, such as HVAC, 

domestic hot water system, solar thermal collectors, PVs etc. Here, mainly modelling approaches 

for buildings and thermal energy storage (TES) systems are discussed, given that these two 

components contribute directly to the Energy Flexibility of buildings. 

3.5.1 Modelling of buildings 

From the degree how detailed a model represents a building, a building model in the literature can 

be roughly categorized into three groups: white-box, grey-box and black-box models.  
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White-box models 

The white-box model, often referred to a physical model, describes a building in details based on 

first principles of building physics. Building performance simulation (BPS) programs commonly used 

by building modellers all adopt this approach, for instance, EnergyPlus, TRNSYS, ESP-r etc. Based 

on physical parameters and thermodynamic laws familiar to building engineers, the white-box model 

is a very intuitive representation of a building, for example, information about geometry and materials 

of building constructions are required for this type of model. Thus, it allows building engineers to 

easily use, understand, analyze or even re-develop these parameters. However, because of the 

large amount of information input, it suffers from the complexity of model construction. (Pr??vara et 

al. 2013) advocated that modelling was the most expensive part of the predictive control. In addition, 

it causes difficulty in real-time control application due to its high computation power demand. 

Several studies however explored the “offline” control application based on the white-box model. 

(Coffey et al. 2010) proposed a model predictive control strategy using a detailed TRNSYS building 

model in the controller for the purpose of peak shaving. A software framework was outlined where 

the optimization work was done externally by GenOpt with a genetic algorithm. The optimal decision 

was handled yet in another organization layer with outputs to the building energy management 

system. (Zhang et al. 2014) took a similar approach with a TRNSYS building model coupled with 

GenOpt optimisation. The TRNSYS building model acted as the “real house”, as well as the model 

in the controller, which facilitated the study without concerning model mismatch, an issue commonly 

existing in model-based control studies. (May-Ostendorp et al. 2012) developed a model of a small 

office building in EnergyPlus, which was used for the extraction of supervisory building control rules. 

Besides offline control application, the white-box model is more often used to generate a synthetic 

database which is further utilized for system identification and validation of simplified models. Several 

of its typical applications will be covered in the section below after introduction of the grey-box and 

black-box models. 

Grey-box models 
The grey-box model uses simplified physical representations, for instance, using a network of 

resistors and capacitors based on the electric analogy of building Resistance and Capacitance (RC) 

to describe a building. In the RC network model, a node of the network represents a space or a layer 

of a wall/floor with a homogenous temperature; the thermal mass of the space or construction is 

represented by a capacitor. Figure 3.2 shows examples of RC network representations of a wall 

(left), a house with radiators (middle) and with a floor heating system (right). 

 

Figure 3.2  RC network representations of a building wall as 2R-1C (left), a house with radiators only (middle) 

and with a floor heating system additionally (right) (Masy et al. 2015). 

As in the electric RC network, the number of capacitors decides the order of the dynamic system; 

and similarly, the research findings of RC networks as well as linear systems can therefore be 

transplanted to the building system for analysis and controller design. This type of model appears to 

be the most widely applied in the literature. 
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The RC network model is included in the category of the grey-box model because the system 

parameters can be physically interpreted, for instance, time constant, resistance and capacitance of 

the system may be analyzed and paralleled in the building system. Therefore, observations and 

findings can still be physically sought. (Candanedo et al. 2013) analyzed the capacitance ratio of the 

central zone and perimeter zone of an office after identifying these parameters. They claimed that 

the bigger capacitance of the central zone showed a slower change than the perimeter zone. 

According to (Madsen & Holst 1995), a RC model may or may not describe the long-term dynamics 

of a building, depending on the number of time-constants of the corresponding RC network. They 

suggested using at least two time-constants for a single-story building. This recommendation is not 

difficult to understand since the physical building system is nonlinear, while the RC network 

approximates it using a linear system. To what extent a RC network represents a building system 

well enough was further investigated by (Bacher & Madsen 2011). Different scenarios of envelope, 

heater and sensor combinations were examined and discussed. A non-RC network based grey-box 

model is also possible, such as the one proposed by (Aswani et al. 2012) .  

Compared to the white-box model, the grey-box model is much simpler. It requires much less 

computational power and can be easily implemented in real-time control applications. However, 

some researchers are concerned about the accuracy of grey-box models and propose some in-

between models. In the study of (Wang & Xu 2006), a model was created by combining functions 

based on thermodynamic laws with grey-box models. Then parameter identification technique was 

applied with operation data to obtain the model. Besides the dynamics of different thermal zones, 

the model also took into account the dynamics of internal mass and multilayer external walls and 

roof. 

Black-box models 
Unlike grey-box models, black-box models cannot necessarily be understood from a physical point 

of view. They are often purely mathematical models, derived from data based on different machine 

learning algorithms, such as polynomial models (e.g. autoregressive moving average (ARMA) 

models), artificial neural networks (ANN) and so on. 

(Jiménez et al. 2008) presented a detailed guidance on how to identify an ARMA with exogenous 

terms (ARMAX) model for a building using the Matlab system identification toolbox IDENT. The 

relationship between the RC network and the polynomial models (or parametric models) were also 

explored. (Huang et al. 2014) developed an ANN model based on the model structure of nonlinear 

autoregressive with exogenous terms (ARX). A three-layer Multilayer Perceptions (MLP) was chosen 

and the Levenberg-Marquardt algorithm was used as the training algorithm to minimize the mean 

square errors between the predicted and measured data. In this study, a RC-network model was 

also created and results showed that the ANN model gave slightly better predictions than the ARX 

model. Research from (Ruano et al. 2006) showed that the ANN model could perform even better 

than the white-box model. However, choosing the correct order number for the ANN model is 

challenging and its model structure is complicated, which could result in a non-convex optimization 

problem that is difficult to solve. (Dong & Lam 2014) examined the feasibility and applicability of the 

support vector machine (SVM) algorithm in building load forecasting. In this case, coefficients of 

variance and the percentage errors of all prediction results were within 5 %. 

Comparison of model types 
The advantage of black-box models is their flexibility of model structure, compared to grey-box 

models. (Jiménez et al. 2008) have shown that the RC network model is just one special type of the 

polynomial models. However, since the polynomial model is more flexible in its parameters and 

structure, the original physical meaning of the RC network model cannot be retained in the expansion 
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of parameters and structure. As to other machine learning algorithms, the choices can be abundant, 

but each has its own limitations, too. 

Nonetheless, the black-box and grey-box models have lower complexity than the white-box one, so 

they are more widely applied in real-time control practice. However, the former two types rely heavily 

on measurement data, which can remain an obstacle in reality. In the literature, one common 

approach is using the white-box model built in BPS programs to generate a synthetic database, as 

mentioned previously, for system or parameter identification for the simplified models. This approach 

diminishes the potential problems existing in system identification using real measurements, such 

as sampling rates selection, satisfaction of excitation conditions and data duration requirements etc. 

Moreover, the simplified models can also be validated with the white-box model ((Masy et al. 2015), 

(Ma et al. 2012), (Ma et al. 2014)). 

In a study from (Ma et al. 2012), the Building Control Virtual Test Bed (BCVTB) environment was 

utilized to integrate EnergyPlus and Matlab. The input-output information of the EnergyPlus model 

was used to identify the ARX model in Matlab. This simplified model was used in the MPC to provide 

optimal cooling setpoints for a five-zone building (see Figure 3.3). 

 

Figure 3.3  A system framework in BCVTB (Ma et al. 2012). 

The study from (Garnier et al. 2015) describes the creation of a complex building model in 

EnergyPlus, and an ANN model was then identified based on the input-output data generated by the 

EnergyPlus model. The optimal network topology was identified with 18-24 hidden neurons using a 

dataset of two months. 

Although different types of models exist, each of them has its own advantages and disadvantages, 

as well as its application field as discussed above. Selecting the most appropriate model and tool to 

solve a problem is a critical step for reasonable building simulation. Most models are highly 

dependent on the specific case. 

3.5.2 Modelling of TES systems 

Like the building thermal mass within the building itself, controlling the charging and discharging of 

a TES system can contribute to the Energy Flexibility of buildings, such as reducing peak power 

demands. 
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Common TES systems found in buildings are hot water tanks for service water and ice storage tanks 

for cooling, often installed in commercial buildings. Currently, only simplified TES models and low-

order RC-networks have been applied for model-based control. (Salpakari & Lund 2016) integrate a 

one-node model for a water tank into an MPC. (Berkenkamp & Gwerder 2014) developed a 

linearized model of a stratified water tank for an optimal control problem. Figure 3.4 shows the 

different layers or nodes of the tank model. 

 

Figure 3.4 Stratified hot water tank (Berkenkamp & Gwerder 2014). 

(Beghi et al. 2014) assumed a lumped-capacitance model for ice storage that considered both 

sensible and latent heat transfer. The model regarded the average temperature of water/ice (storage 

medium), heat exchange efficiency and heat loss as the function of insulation (self-discharge). 

Such simplified TES models integrated into MPC and optimal control are sometimes not capable of 

capturing the dynamics in the complex process of heat and mass transfer. For this reason, 

researchers have introduced model-free reinforcement learning and model-based solutions, such as 

ANN models (Rosiek & Batlles 2011). The reinforcement learning and ANN models can solve 

nonlinear problems with fast computation. However, the computation time extends substantially as 

the number of states increases in the optimization and state-space model. 

3.5.3 Advanced mathematical techniques for flexibility control 

As discussed earlier, most business cases for energy flexible buildings depend on time varying 

energy pricing. Predictable time of use pricing alters tariffs at known times of the day, while a dynamic 

market offers real-time pricing. Real-time electricity pricing that reflects intermittent renewables is 

analysed as a stochastic process (Kitapbayev et al. 2015).  

Mathematical finance techniques take stochastic input data to quantify the flexibility of a possible 

investment; in this case a district energy system. One technique, “real options”, assists business 

decision making. Applied to a district energy system equipped with CHP, the high-level control 

decision is to operate or idle the local CHP plant in favour of dynamically priced utility energy. 

(Kitapbayev et al. 2015) find that the real options technique surpasses discounted cash flow analysis 

of investments, by modelling uncertainty and operational flexibility. In summary, they prove by 

simulation that “short-term flexibility can change the long-term business case”. Research of large 

energy systems with flexible operation and pricing will drive advanced mathematical modelling and 

simulation.  
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4 Multi-objective genetic algorithm for 
model predictive control in buildings 
Athila Santos and Krzysztof Arendt, Center for Energy Informatics, University of Southern 

Denmark 

4.1 Building and system description 

OU44 is a teaching/office building of 9,600 m² spread over three floors and a basement constructed 

at the campus of the University of Southern Denmark – see Figure 4.1. The building is designed as 

a benchmark pilot project for energy efficiency and automated performance testing. It has been 

operational since 2015 and built according to the Danish Building Code BR2015 with a $18,5 million 

budget. The energy consumption of the building also complies with the BR2020 requirements due 

to the high performance quality and commissioning process. The building is connected to the 

campus' local electricity and district heating grids. 

In Denmark, a building may be classified as class 2015 when the total demand for energy supply 

(kWh/m² heated floor area per year) for heating, ™ventilation, cooling and domestic hot water, as 

well as lighting (except for dwellings) may be no more than 41 + 1000/A (kWh/m²/year), where A is 

the total heated floor area (PAROC, 2017). The introduction of an energy factor of 0.8 for district 

heating for class 2015 and of 0.6 for class 2020 reflects the fact that district heating is generally more 

energy-efficient to produce than other types of heating. The requirements for airtightness in low 

energy buildings have also been tightened. Denmark is so far the only country in Europe to have a 

definition of a “nearly zero” building (ECOFYS, 2013). The purpose of OU44 was to establish a living 

lab for improving the energy efficiency of public buildings based on Information and Communications 

Technology (ICT) solutions that also account for the behavior of occupants.  

This building is under normal use by its occupants and has room for approximately 1200 students. 

The OU44 building is equipped with a Building Management System (BMS) controlling multiple 

building-related sensors, such as temperature, CO2, humidity, window and door sensors, as 

actuators in systems like Heating, Ventilation and Air Conditioning (HVAC), lighting and power 

outlets. Although it is an advanced system in terms of the current engineering standards, it is still 

based on a set of expert rules with little or no overall optimization coordination from the global point 

of view. Figure 4.2 shows an example of how the different sensors and actuators are organized in 

different control zones. The BMS system is organized based on room levels and the logic nodes are 

distributed on Schneider Electric Automation Servers.  

4.2 Control scope 

The current BMS does not introduce any flexibility. The aim is to boost the performance and the 

flexibility of the BMS system with a multi-objective model predictive control. 
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Figure 4.1  The OU44 Site. 

 

 

Figure 4.2  Example of sensors in OU44. 

4.2.1 Ventilation 

The ventilation is organized in 4 different modules, each with a rotary heat exchanger for heat 

recovery from the exhaust to the fresh supply air. The flow rates are controlled based on the indoor 

CO2 concentration, room booking and Passive InfraRed (PIR) sensor measurements and heating 

capacity from district heating. In each zone, the damper opening is controlled based on prescribed 

CO2 thresholds: 600 ppm/45 %, 750 ppm/70 %, 900 ppm/100 %. Additionally, rooms are pre-
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ventilated before the booked meetings. The pre-ventilation starts 30 minutes before the planned 

meeting. The amount of the fresh air supply during the pre-ventilation is, however, not specified in 

the documentation. During the meetings a minimum ventilation rate can be specified, but this option 

is currently disabled and only CO2-based ventilation is in use. 

Ventilation is used also for cooling. If the air temperature exceeds the setpoint by more than 2 °C 

(adjustable), the airflow gradually increases. The airflow vs. temperature increase is, however, also 

not specified in the documentation. Figure 4.3 shows the fresh air intakes (Bygningsstyrelsen, 2016). 

 

Figure 4.3 Air intake chimneys for ventilation systems (construction phase). 

4.2.2 Heating 

The heating system is based on district heating to maintain the setpoint temperatures using radiators 

and the ventilation systems. Different setpoints are used for day and nighttime. The room 

temperatures can be adjusted by the users within a narrow range (±1.5 °C). 

4.2.3 Lights 

The lights can be turned on and off by the users, but the dimming is controlled by the BMS to maintain 

a 200 lux setpoint in each controlled zone. When there is no activity in the room, the lights turn off 

after 30 minutes. 
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4.2.4 Blinds 

The blinds are roman blinds and are controlled on a per room basis based on the outdoor 

illuminance. If the illuminance exceeds a prescribed threshold (20000 lux on the South façade and 

25000 lux on the East facade), the blinds move down. There is a built-in 15-minute delay between 

up/down movements to avoid too frequent movements on cloudy days. The blind control can be 

overridden by the room users. 

4.2.5 Energy flexibility mechanism 

The system was designed to take advantage of building dynamics (passive heating/cooling), which 

may result in temporary lower occupant comfort. The system was, however, constrained to not allow 

the thermal comfort to be outside the PMV range -1.0, …, +1.0. Table 4.1 describes the Energy 

Flexibility mechanisms and how they are implemented in the system. 

Table 4.1  Energy flexibility mechanism. 

Type Description 

Load Shifting − Pre-ventilation or postponed ventilation 

− Pre-heating and utilization of thermal mass 

Valley filling 
− Nighttime free cooling (using ventilation) during summer 

Target 

− Decreased ventilation rate in low occupancy periods 

− Passive heating (absorption of solar heat gains into thermal mass 

for later use) 

− Light dimming 

4.3 Methodology: control strategies 

The control strategy is implemented as a direct control of the ventilation dampers, radiator valves, 

setpoints for the air pressure in the ventilation duct system, ventilation air temperature (heating only), 

and light systems. The control is based on a multi-objective model predictive control of the heating 

and ventilation systems and blinds. The system objectives are to maximize indoor thermal comfort, 

minimize energy consumption and minimize energy costs. In addition, the system can react to the 

Demand Response (DR) events by temporarily sacrificing other objectives. The system utilizes 

simulation models to predict the indoor environment conditions and energy consumption based on 

the weather and occupancy forecasts. These predictions can be used to minimize the negative effect 

of DR events, because the system will be able to optimize the overall strategy to the DR event. The 

exemplary strategies the system can apply are related to the building dynamics, e.g. pre-heating, 

pre-cooling, pre-ventilating. Table 4.2 describes the algorithm implementation for each control 

strategy. 



 

37 

 

Table 4.2  Algorithm implementation of the control strategy. 

Algorithm Description 

Genetic Algorithm 
Used to estimate building specific steady state parameters of all 
zones and to optimize overall control strategy 

Unscented Kalman Filter 
Used to estimate specific transient parameters of the model (e.g. 
occupancy in rooms without cameras) 

Probabilistic Classification 
Used to predict indoor occupancy based on 3D camera data or the 
UKF estimates 

 
The optimization framework consists of the following parts (Figure 4.4): 

a) Multi-Objective Genetic Algorithm (MOGA) (Sørensen & Jørgensen, 2017), 

b) Simplified gray-box models calibrated using ModestPy – Functional Mock-up Unit parameter 

estimation toolbox (Arendt, et al., 2018), 

c) Archiver with the sMAP interface (Dawson-Haggerty, 2013). 

 

Figure 4.4  Optimization framework based on the MOGA. 

Due to the use of Functional Mock-Up Interface (FMI) (Blochwitz & Otter M., 2016) and sMAP 

interfaces, the framework is model and system-independent. E.g. the same interface can be used to 

communicate with a virtual building (simulator) as with the actual building (real application). 

The optimizer is based on the MOGA (Sørensen & Jørgensen, 2017) that constructs a Pareto frontier 

with respect to the considered objectives. Each individual in the population represents a specific 

control policy, e.g. specific heating and ventilation profiles, that is tested in a simulation. The Pareto 

frontier (Branke, et al., 2008) construction is iterative and based on the genetic algorithm operations: 

selection, crossover, and mutation. Whenever a new individual with a better fitness with respect to 

at least one of the objectives appears in the evolution, it joins the Pareto frontier. When one of the 

stopping criterions is met, the evolution stops and the algorithm proceeds to the second phase in 
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which the final policy is selected. There are two stopping criterions in use: (1) no improvement in the 

Pareto frontier for a defined number of generations, (2) maximum computational time reached. 

The policy selection in the second phase is conducted recursively. In each step i the subset of 

individuals optimal with respect to the priority level Li (Figure 4.5) is selected. Each priority level can 

contain either one or more objectives. In the case there are two or more objectives at the same level, 

the objectives are normalized in order to identify the optimal population subset. However, no 

normalization is required for priority levels with a single objective. Finally, after traversing through all 

the levels, one or more equally optimal policies are left, out of which one is selected randomly. 

 

Figure 4.5 Pareto frontier in the multi-objective genetic algorithm optimization 

Due to the FMI-compatibility and the use of MOGA the framework is essentially model independent. 

The models can be implemented in any FMI-compliant tool, and they can be non-linear, non-

differentiable or even non-continuous. In addition, since the optimization is not based on a cost 

function, adding new objectives is straightforward. The objectives do not have to be normalized with 

respect to one another. Therefore, the framework is potentially more flexible than MPC systems 

based on collocation or shooting methods. Such features might especially be relevant for building 

systems, which are often non-linear (e.g. HVAC) and non-continuous (e.g. on/off controllers). On the 

other hand, MOGA is expected to be more computationally demanding than gradient-based 

methods. 

MOGA uses 7 gray-box zone models to simulate the effects of control policies on the thermal zones 

in the analyzed building. The zone models are based on the RC thermal network, and each zone 

model has the same structure (Figure 4.6), but different parameters. The models are implemented 

in Modelica (Mattsson and Elmqvist, 1997). The zone model parameters were estimated by 

minimizing the error in indoor temperature and CO2 compared to the EnergyPlus outputs using the 

ModestPy toolbox (Arendt et al. 2018). 

The performance of the framework is compared with the rule-based control (RBC) in a one-month 

long simulation, based on the climate data for January from Typical Meteorogical Year for 

Copenhagen. It is assumed that the framework has control over the room temperature setpoints 

(each room can have a different setpoint) and has access to room occupancy schedules. In the real 



 

39 

 

applications the occupancy schedules would be replaced with occupancy predictions. The influence 

of the quality of the occupancy predictions on the performance of the framework is not considered 

in this study. Two MOGA-based scenarios are considered: 

1. CTRL-EE – optimization of temperature setpoints to minimize energy consumption and 

maintain indoor thermal comfort, 

2. CTRL-DK1 – optimization of temperature setpoints to minimize energy price (based on the 

Nord Pool market data) and maintain indoor thermal comfort. Electric heating is assumed in 

this case. 

In both scenarios the maintenance of indoor thermal comfort has the highest priority. In the RBC 

strategy the temperature setpoints are scheduled to 20 °C during weekdays between 5:00-16:00, 

and 15 °C otherwise. The RBC strategy is implemented directly in EnergyPlus. 

The occupancy schedules for the seven zones were generated based on the reference schedule for 

office buildings available in OpenStudio, with additional time/value offsets, so that there are no two 

same schedules in the building. 

4.4 Implementation: genetic algorithm 

The system is a Multi-Objective Genetic Algorithms (MOGA) framework and it is built as a 

component-based system from software components intended to be units of independent 

production, acquisition and deployment (Sørensen & Jørgensen, 2017). It is divided into four types 

of components: Objectives, Core, Data and Services components, see Figure 4.7. Each component 

encompasses an individual unit of software functionality and it is implemented as loosely coupled 

plug-in components. 

An objective component provides one or more objective functions. Each objective function can be 

formulated either as a minimization cost function or as a constraint. The objective function evaluates 

the set of solutions proposed by the MOGA component during the optimization process. A solution 

can have multiple different types of domain specific decision variables; e.g., temperature, CO2 or 

light-plane. The result of an optimization is a population of non-dominated Pareto optimal solutions 

(Kalyanmoy & Dhish, 2005). Objective functions implement the Objective interface and represent 

minimization cost functions. The decision variables are provided by implementing a specific Variable 

interface from the Variable platform. The variables can be of different types and can be customized 

for the domain specific problems. This is important as some domain problems are difficult to encode 

into a generic data types, e.g., a binary string. Dynamic Links are used to connect decision variables 

and objectives of unrelated types and promote extensibility and late configuration of the problem 

context (Jensen & Jørgensen, 2010) (Jensen & Jørgensen, 2011). Furthermore, the open/closed 

principle is supported, as the problem context is open to extension but closed to modification. This 

principle is important when the problem context can change dynamically over time. 

Figure 4.8 shows the pseudocode for the default evolutionary algorithm implementation used by the 

core of the MOGA (Ghoreishi, et al., 2015). The algorithm is separated into the following phases: 

Initialization, Ranking, Mutation, Crossover and Termination. The MOEA function has three 

arguments: 1) the extensible problem object, 2) a time-stamp time for when the algorithm is 

executed, and 3) the population oldPop from previous executions. For each optimization, the 

variables attached to the problem object are updated using the Decouplink CONTEXT function, see 

Line 2-3. Line 5 checks if the previous population oldPop is empty. The population oldPop is empty 
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the first time the algorithm is executed. If the population oldPop exists from previous executions, it 

is copied into the new non-dominated population pop (Line 7). The time-stamp time is used for 

optimization problems that use the start time of the optimization to initialize the population. A domain 

specific initialization operator INIT is implemented for each type of decision variable (Line 11). The 

function ADDNONDOMSOLUTION ranks all solutions in the population pop according to the Pareto 

dominance relation and is called during initialization and after crossover and mutation. 

 

Figure 4.6 Gray-box model of a zone based on a R2C2 thermal network implemented in Dymola/Modelica. 

For each generation, solutions are selected a number of times for mutation or crossover based on 

the added selection strategy implementation. The default implementation of the SELECT function 

selects a pseudorandom solution from the population. Finally, a priority-based post selector function 

is applied to select one solution out of the resulting Pareto optimal set. The values of the objectives 

with same priority level are summarized and then the population is sorted in lexical order based on 

the priority levels. The most important priority level is sorted first and the top solution of the sorted 

population is then selected as the best solution. 
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Figure 4.7  Component-based view of the MOGA framework. 

 

Figure 4.8  MOGA algorithm. 
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4.4.1 Negotiation 

Negotiation is a process in which disputing agents decide how to divide the gains from cooperation 

between themselves (Fatima & Kattan, 2011), (Kattan, et al., 2013). Each agent negotiates a set of 

resources on the basis of maximizing or minimizing a utility fitness function. When negotiation 

involves a set of multiple resources it is denominated ``multi-issue negotiation''. 

This framework is applicable to a broad range of application domains, offering multi-objective and 

conflicting-goals solution search in the decision-making process. Decision problems are formulated 

using the following abstractions (Clausen, et al., 2014): 

 

 Issue: A variable describing a social construct or physical phenomenon whose value must be 
decided by the framework. The type and range of this value are domain specific. 

 

 Information: User inputs from sensors and other systems. 
 

 Concern Agents: A set of independent agents that implement domain requirements. Each agent 
attempts to influence the values assigned to its concerned issues. For this, a fitness function is 
modeled. 

 

 Contract: A set of values for each defined issue. A contract becomes satisfying if it is added to a 
Pareto-front of contracts either by replacing an existing satisfying solution (i.e., its values 
improve fitness for one or more agents without deteriorating other fitness values) or by 
extending the Pareto-front (i.e., no existing satisfying contracts is able to replace the proposed 
contract and vice-versa). 

 
The negotiation context consists of several Concern Agents (CA), which negotiate over a set of 

issues, and a Manager Agent (MA), responsible for managing the negotiation process and finding 

an optimal contract. A contract is defined as a set of determined issues, that satisfies the goals of 

the CA. 

Figure 4.9 shows the negotiation process where the MA generates a population of random contracts 

which will be submitted to each CA for evaluation. The evaluation assigns a cost value to each 

contract in the population, representing the degree to which the proposed contract adheres to the 

goal of the CA. In order to select the best contracts to optimize the overall system performance, the 

Pareto criteria is applied over the contract set to elect the best candidates. A new set of contracts is 

generated at each iteration based on the previous one. 

Each building zone represents a negotiation context where interdependent issues are distributed 

across multiple coupled control domains. The framework is responsible for the negotiation of an 

optimal solution to the issue allocation problem among the self-interested CA.  
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Figure 4.9  Multi-objective Multi-issue Negotiation. 

4.5 Results and conclusions 

In the initial tests on a virtual building (simulator) the framework was able to save around 24-25 % of 

the heating energy as compared to a rule-based control (RBC) (Table 4.3). Along the energy savings, 

the framework increased the indoor thermal comfort by reducing the number of occupied hours 

during which the indoor temperature was below the defined comfort level. 

Table 4.3  Total heating energy consumption per scenario. 

Scenario Total heating energy [kWh] Relative [% of RBC] 

RBC 5368.66 100.0 

MOGA-EE 4050.43 75.4 

MOGA-DK1 4091.90 76.2 

Based on the indoor temperature profiles (Figures 4.10 and 4.11) it can be concluded that most of 

the energy savings were due to the demand driven heating, as opposed to the fixed schedule-based 

behavior in the case of RBC. The indoor temperature profiles in the RBC were repetitive and, in 

many periods, not reflecting the actual occupancy, e.g. see large deviations between RBC and 

MOGA results on January 4, zones 2-7 in Figure 4.10. In addition to the demand-driven behavior, in 

most cases MOGA was able to preheat the zones before the actual occupancy occurred, with some 

exceptions when it did not start the preheating early enough, e.g. on January 4, zone 4 in Figure 

4.10. The similar monthly profiles of indoor temperature in MOGA-EE and MOGA-DK1 (Figure 4.11) 

suggest that the highest priority objective, i.e. the thermal comfort maintenance, dominated the 

solution.  

The framework reduced the discomfort (measured in Kh) by around 70% (Figure 4.12). The 

discomfort metric used in the study was calculated as the product of the temperature difference 
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between the setpoint of 20°C and the actual temperature and the time in which the difference was 

observed. Only occupancy periods and only the negative temperature differences were taken into 

account, i.e. when the indoor temperature was lower than 20°C. E.g. 1 Kh means that the 

temperature was below the setpoint by 1 degree during 1 h of occupancy. The obtained discomfort 

metrics were 287.85, 42.18, 41.58 for RBC, MOGA-EE, MOGA-DK1, respectively. The result 

depends on the chosen reference RBC schedules, however the discomfort in RBC could only be 

decreased at the cost of increased energy consumption.  

 

Figure 4.10  MOGA-optimized indoor temperature vs. RBC indoor temperature in three selected rooms of the 

virtual building (areas shaded in gray mark occupancy periods). 
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Figure 4.11  One-month indoor temperature profiles for the three considered scenarios (RBC, MOGA-EE, 

MOGA-DK1). Each column represents a single zone (profile name - zone number). 

We believe that the slightly lower discomfort in MOGA-DK1 as compared to MOGA-EE is likely due 

to the stochastic nature of the optimization algorithm. Since the framework had access to 100% 

accurate occupancy “predictions”, it could theoretically minimize the discomfort to 0 Kh. The fact that 

the discomfort metric was non-zero indicate that either the solution was still suboptimal, e.g. due to 

the maximum CPU time reached. The suboptimality of the solution is at least partially true as can be 

seen in the case of zone 5, MOGA-EE, January 3 in Figure 4.10, where the indoor temperature 

setpoint at night is slightly above actually needed. The influence of the objectives hierarchy and 

optimization settings should be investigated further in the future. 

The indoor heating profiles and the energy price during a subperiod of the analyzed month can be 

compared in Figure 4.13. As in the case of temperature, MOGA-EE and MOGA-DK1 followed a 

similar trend with one major exception on January 4 when the electric energy price was negative for 

a short period of time. The controller in MOGA-DK1 decided to consume as much energy as possible 

in that time, meaning that the second priority objective came into play. However, for most of the time 
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the price signal had no influence on the solution. Possibly higher price variations or different objective 

hierarchy would be needed to effectively optimize for the total energy cost in a real application. 

 

Figure 4.12 Indoor comfort violations for the three considered scenarios 

Contrary to expectations, the MOGA-DK1 yielded slightly higher energy cost than MOGA-EE. 

However, as argued before, this is likely due to the stochastic nature of the optimization algorithm 

and the dominant role of the highest priority objective of the thermal comfort maintenance. 

 

Figure 4.13 Total heating profiles for the three scenarios (top) vs. energy price (bottom). 

The presented results were computed using code that was only partially parallelized, e.g. Pareto 

frontier detection was performed on multiple cores. However, the main bottleneck with respect to the 

CPU time was the simulation of the gray-box zone models, which was performed on a single core. 

Due to the nature of MOGA, the zone model simulations need to be repeated thousands of times. In 

this setup a maximum allowed optimization time per each 7h optimization horizon was five minutes. 

After each optimization, a one-minute time slot was used to synchronize the measurements and 

control strategy between MOGA and the virtual building. The optimization was repeated every 1h of 

the virtual building’s time. In total, around 3 days of real time were needed to perform a one-month 

emulation of the virtual building with the MOGA framework (for one scenario). Although the 

computational requirements of the framework are considerable, they are feasible for implementation 

in real buildings. However, implementation in large buildings (with hundreds of zones) may require 
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parallelization of the zone model simulations. In general, more investigations regarding the scalability 

of the framework are required. 

 

Figure 4.14 Total energy cost per scenario 

Summarily, the MOGA framework reduced the energy consumption by around 25% (compared to 

RBC), however most of the saving were due to the demand-driven heating and not due to the 

utilization of the building dynamics. This may be due to either a low thermal inertia of the studied 

building or due to the deficiency of the dynamic optimization method. The relatively small difference 

in the results between the case based on the energy efficiency objective and the case based on the 

energy cost minimization objective shows that dynamic energy pricing might not be a sufficient 

incentive for increasing Energy Flexibility in the analyzed building.  
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5 Deep reinforcement learning for 
optimal control of space heating 

 Hussain Kazmi, Enervalis and KU Leuven, Belgium 

 
Classical methods to control heating systems often suffer from suboptimal performance, caused by 

an inability to adapt to dynamic conditions and unrealistic assumptions often based on early-planning 

stage building models. This case study explores the use of a novel deep reinforcement learning 

algorithm which can control space heating in buildings in a computationally efficient manner, and 

benchmarks it against other known techniques. The proposed algorithm outperforms rule-based 

control by between 5-10 % in a simulation environment for a number of price signals. We conclude 

that, while not optimal, the proposed algorithm offers additional practical advantages such as faster 

computation times and increased robustness to non-stationarities in building dynamics against other 

well-established methods which are also discussed in this section. 

5.1 Building and system description 

This study uses the building simulator described in (Ruelens, 2016) to test and benchmark the 

learning characteristics and abilities of the proposed Reinforced Learning (RL) algorithm. The 

simulator, implemented in Python, is an Equivalent Thermal Parameter model (ETP), which 

simulates the heating and cooling of a building interior as a function of a limited number of lumped 

parameters, such as outdoor temperature and characteristics of the heating equipment. It is a 

deterministic second order model, which takes into account the heat being stored in the building 

envelope and causes it to cool down in a delayed manner in case of an outdoor temperature drop, 

or in the absence of introduced thermal energy. The simulation is modelled according to the typical 

thermal response of highly efficient buildings in Belgium and The Netherlands, and treats the entire 

building as a single thermal zone. The building is considered to be equipped with a modulating air-

source heat pump for space heating; a depiction of the control environment is shown in Figure 5.1.  

 

Figure 5.1  Heat pump thermostat control environment (Ruelens, 2016). 
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5.1.1 Influencing variables 

In the following, all the variables influencing the system dynamics as defined by the simulator are 

listed: 

1. Ambient air temperature 𝑇𝑎
𝑡 is an exogenous variable and reflects the environmental disturbance 

in this scenario. It can’t be influenced by the RL agent. For this research, five months of ambient 

temperature data was used and is visualized in Figure 5.2. 

2. Building envelope temperature 𝑇𝑚𝑎𝑠𝑠
𝑡  is a measure of the energy embodied by the building at 

time instant t, and is not directly observable. 

3. Indoor air temperature 𝑇𝑖
𝑡 which is a function of the following: 

𝑇𝑖
𝑡 = 𝑓(𝑇𝑎

𝑡−1, 𝑇𝑚𝑎𝑠𝑠
𝑡−1 , 𝑇𝑖

𝑡−1, 𝑎𝑡−1) (1) 

4. The indoor temperature is measured and can be influenced by the control action chosen by the 

reinforcement agent, 𝑎𝑡−1. 

5. Control action 𝑎𝑡 reflects the input power of the heat pump that it injects into the zone at time 𝑡, 

which is a continuous value between 0 and 𝑃𝑚𝑎𝑥 [Watt]. 

6. Energy consumption 𝑐𝑡  follows directly from the control action, 𝑐𝑡 = 𝑓(𝑎𝑡−1)[𝑘𝑊ℎ]. 

Figure 5.2  Ambient temperature variation over 5 winter months in 2016 – 2017 (observation data from 

Soesterberg, The Netherlands). 

5.2 Methodology 

5.2.1 Background 

It is possible to reduce energy consumption for space conditioning by leveraging the flexibility 

inherent in buildings. This can be done by automatic control of the heating equipment (for instance, 

by modulating the power or varying the thermostat setpoints) while respecting occupant defined 

comfort bounds (Gill, 2014). To improve energy efficiency, these automatic controllers have to go 
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beyond classical rule-based control (RBC) formulations, which are usually implemented as naive 

hysteresis loops (i.e. reheat the building every time a temperature threshold is met). 

Model Predictive Control (MPC) offers an obvious improvement over RBC in the quality of control by 

bringing anticipative prowess to the control procedure (Afram, 2014). The building is reheated in this 

case while optimizing towards a secondary objective such as reducing costs. The primary objective 

is naturally to preserve occupant comfort. MPC, while outperforming RBC, introduces complexity to 

the system and assumes the existence of a model explaining the dynamics of the system. This model 

is often based on building physics models and has to be constructed offline – an assumption that is 

usually not valid for residential buildings as creating a detailed and accurate model would be too 

costly in practice. Furthermore, building information models (BIM) and energy models, even when 

they are available, can have significant discrepancies between theoretical and practical performance 

(Majcen, 2015). Data-driven control can alleviate some of these limitations of requiring an accurate 

model (Kazmi, 2016); however, the computational expense and data requirements to continuously 

learn and plan can be significant. 

In recent years, reinforcement learning (RL) has emerged as a viable alternative to MPC in many 

domains. The allure of RL lies in its ability to approach (or exceed) the level of optimal control offered 

by model predictive controllers while learning directly from sensor data, i.e. not requiring the 

presence of a model beforehand. A number of reinforcement learning algorithms have been 

proposed in literature, which can be broadly classified as model-based and model-free RL algorithms  

(Sutton, 2017) (Kazmi, 2017).  

5.2.2 Context 

While both  model-based and model-free RL algorithms are data driven and have their advantages 

and disadvantages, the focus here is on developing a model-free controller because of the 

computational advantages this class of algorithms offers. This model-free controller can then be 

compared with an ideal MPC (which has access to the true system dynamics model) and a data 

driven model-based controller to determine its efficacy. 

Some studies proposing reinforcement learning strategies for different aspects of building control 

have recently appeared (Barrett, 2015), (Wei, 2017), (Ali, 2017) (Kazmi, 2018), however, there has 

been no thorough comparative study on the pros and cons of different reinforcement based 

controllers. Knowing how these algorithms stack up against each other and known model-based 

controllers is vital for practitioners to determine which one is best suited to solve practical problems. 

This example is intended to quantify the performance of the state of the art of RL algorithms for 

optimal control of buildings towards better energy or cost efficiency by leveraging the Energy 

Flexibility afforded by its thermal inertia. In doing so, it also aims to provide future directions for 

research in data driven building control and help researchers apply and report their findings in more 

standardized settings. 

A note on terminology is necessary here. While the distinction between MPC and model-free RL is 

obvious (one makes use of a model while the other doesn’t), the difference between model-based 

RL and data-driven MPC is harder to define. There are two dimensions to this. The first is exploration 

and the second is policy-side learning (Sutton, 2017) (Finck, et al., 2018). Actively exploring the state 

space of the system under consideration with the primary purpose of improving the learnt dynamics 

model is usually exclusively an RL construct. As such, it is seldom seen in data-driven MPC 

implementations. While exploration might sometimes lead to degraded performance momentarily, it 

improves performance over the long run by improving the model quality. Likewise, while both data-
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driven MPC and model-based RL algorithms improve their representation of the system dynamics 

through observation data, model-based RL algorithms can go an extra step and learn the optimal 

policy as a corollary to this learning. This is evidenced in the popular family of Dyna algorithms 

(Sutton, 2017) and can help improve the quality and speed of control. Data-driven MPC usually does 

not include any policy-side learning, thereby solving an optimization problem at every time step 

(including for states it has already visited and optimized for before). 

5.2.3 Formulation 

The focus of this study is to develop reinforcement learning based controllers and benchmark them 

against classical controllers on their ability to leverage building Energy Flexibility. The reinforcement 

learning problem can be formulated as a Markov Decision Process (MDP): {𝑠, 𝑎, 𝑇, 𝑅}  (Sutton, 2017) 

where each individual element is defined as follows: 

State space: continuous, where 𝑠𝑡 ∈ 𝑆  is the state at time t, consisting of n previous indoor 

temperatures including the current one, and the current ambient temperature. This variable is the 

state estimate and is meant to approximate the true state of the building which cannot be observed 

directly: 

𝑠𝑡: (𝑇𝑖
𝑡, 𝑇𝑖

𝑡−1, 𝑇𝑖
𝑡−2, … 𝑇𝑖

𝑡−𝑛, 𝑇𝑎
𝑡) (2) 

The action space: discretized between 0 and 𝑃𝑚𝑎𝑥, where 𝑎𝑡 ∈ 𝐴, and is the energy injected by the 

heat pump into the thermal zone; in this case, 𝑃𝑚𝑎𝑥 is 2000 W. Thus the action taken by the controller 

(also referred to as the control agent or simply agent) at any given time can be one of the following: 

𝑎𝑡 ∈ [0, 400, 800, 1200, 1600, 2000][𝑊] 

There is no cooling functionality implemented so the agent takes no control action if the temperature 

exceeds the maximum allowable temperature. 

The transition function, 𝑇𝑡(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1)  represents the system dynamics and is learnt from 

observation data 

Reward function 𝑅𝑡+1(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) represents the reward system that the agent has to maximize over 

time. The rewards are shaped so that higher priority is given to occupant comfort compared to energy 

or cost reduction. The negative signs reflect that this is a negative reward stream (or penalty). This 

reward stream is then split into these two components where the reward (or penalty) accrued 

because of energy consumption is given by: 

𝑅𝑐𝑜𝑛𝑠
𝑡+1 = −𝑐𝑡𝜆𝑡 (3) 

Which depends on the price of energy consumption c and the energy consumption 𝜆 at time t itself. 

The reward function for loss of occupant comfort, on the other hand, is defined as: 

(4) 

Where 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the maximum and minimum comfortable indoor air temperatures of the 

thermal zone. Figure 5.3 shows the reward function. The numerical values given for the reward 

function for loss of occupant comfort were derived empirically. However, a sensitivity analysis 

showed that the RL agent is capable of learning even if these rewards varied substantially. The 
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slightly asymmetric loss function derives from a review of literature on thermal user comfort (De 

Dear, 2002), (ASHRAE, 2010). An additional reason for the asymmetry in the loss function derives 

from the fact that in this particular control problem the reinforcement learner can only control the 

heating of the building (i.e. there is no air conditioning for cooling). Since the building is assumed to 

be in a North-Western European climate, the loss of comfort in lower temperatures is much more 

relevant. 

Based on ASHRAE studies, the optimal indoor temperature is 21 ℃ with a band of 2 ℃ which results 

in 90 % occupant acceptability. Of course, the comfort range is extremely subjective and depends 

on individual preferences, something which takes into account by making the reward system 

parametrized over the choice of minimum and maximum acceptable temperatures. The RL agent is 

supposed to work for a range of user comfort valuations as long as it is prioritized over energy 

consumption. The total reward at any given time instant is then a simple summation of these two 

reward streams. 

 

Figure 5.3  Reward function for occupant comfort loss. 

The time horizon for optimization is considered to be 24 hours; the time step used by the emulator 

is one hour, which is also the resolution at which the control agent issues new commands. 

5.3 Implementation 

5.3.1 Control objectives 

The reinforcement learning agent is expected to balance two reward streams. The first derives from 

respecting occupant comfort bounds while the second is to consume as little energy or money as 

possible while still meeting the first objective. The reinforcement agent has no prior information about 

the building dynamics at the beginning of control. 
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5.3.2 Rule based control 

As mentioned earlier, the baseline controller implemented in many buildings today is rule based. 

This provides the lower bound of the performance and serves as the benchmark on which the 

proposed algorithms have to improve upon. This control takes the following form: 

𝑎𝑡 = {
𝑃𝑚𝑎𝑥     𝑖𝑓 𝑇𝑖

𝑡 < 𝑇𝑚𝑖𝑛 −  𝛥𝑇

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (5) 

Which implies that the heat pump starts consuming full power as soon as the temperature falls below 

the minimum threshold limit of the occupant comfort by a predefined hysteresis band.  

5.3.3 Model predictive control 

A model predictive controller is implemented which assumes full knowledge of system dynamics. 

This provides an upper bound for the performance when compared with rule based control and the 

research question is how close a reinforcement learning based agent can approximate this solution. 

5.3.4 Model-based reinforcement learning 

The final benchmark, the proposed model-free controller is compared against, is a model-based 

reinforcement learning agent (which can also be considered to be a data-driven MPC). Here, the RL 

agent needs to learn the transition function to represent the system dynamics from observed data. 

This is achieved using a neural network. This neural network takes as input the feature vector defined 

in Eq. 2, and produces a scalar continuous valued output reflecting the indoor temperature at the 

next time step. It is possible to build future trajectories of arbitrary length by repeating this process 

multiple times. The model-based agent interleaves learning and planning to identify the action vector, 

which would maximize long-term reward. Multiple options were explored for the planning step. These 

include a cross entropy method (CEM) based planner (De Boer, 2005) and a genetic algorithm (GA) 

based planner (Fortin, 2012).. Finally, the agent uses an 𝜀-greedy algorithm to take exploratory steps 

to improve its learnt dynamics model. Here 𝜀 is given by a harmonic sequence, which decays over 

time with  1/𝑑𝑥 . The details of the implemented algorithm are summarized in the following 

pseudocode Algorithm 1. 

 

 Figure 5.4  Pseudocode for model-based RL control. 
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The hyper-parameters of the neural network are chosen by grid search based on known design 

practices followed by tuning to obtain the best performance (Bengio, 2010).  

5.3.1 Model-free reinforcement learning (D-DNFQI) 

For the model-free algorithm, a variant of fitted Q iteration (Bengio, 2010) is used. This algorithm 

makes use of deep neural networks to approximate the optimal Q values for planning control actions: 

𝑄(𝑠, 𝑎, 𝑤) ≈ 𝑄∗(𝑠, 𝑎) =  𝑄𝜋(𝑠, 𝑎)  (6) 

The Q value is the goodness of a state-action pair, and identifies the value of different actions, given 

a state s. Here 𝑤 reflects the weight parametrizations of the neural network. The objective of this 

neural network is to minimize the mean squared error (MSE) with respect to the observed target 

value. Because of known issues with model-free learning such as convergence problems and 

instability in learning, target Q networks and prioritized experience replay are implemented in the 

algorithm (Volodymyr, 2013), (T. Schaul, 2015).. Finally, to tackle the upward bias problem of Q 

estimations, Double Q learning is also implemented (V. Mnih, 2015). The final algorithm takes on 

the form of a double deep neural fitted Q iteration (D-DNFQI) with experience replay and 𝜀-greedy 

exploration. 

As before, the hyper-parameters of the neural network are optimized using search and existing 

guidelines. The structure of the output neural network is different than in the model-based RL case 

however. The Q-network directly outputs a 6 dimensional vector which reflects the ‘goodness’ of all 

possible control actions given an input state-action pair. The model-free algorithm is summarized in 

the following pseudocode Algorithm 2. 

 

Figure 5.5  Pseudocode for model-free RL control (D-DNFQI). 
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5.4 Results 

In this section, the proposed algorithm (D-DNFQI) is compared with more well-known controllers to 

establish its efficacy. For each test, the heating system is left uncontrolled with no input for 24 hours. 

After this initial period, the RL algorithms were given control whereupon learning started from 

scratch. In the following, the performance of the proposed RL agent is considered according to these 

pricing signals: 

The case of flat electricity pricing, which translates to a purely energy efficiency metric.  

The case of a dual pricing scheme, with fixed high prices during the day and fixed low prices during 

the night. This reflects the reality for many residential connections in countries with smart meters; 

the prices used were consumer tariffs from Belgium. 

The case of real time pricing, where prices vary hourly on a daily basis. However, such pricing is 

usually valid only for aggregations of houses and not individual households, so it is not discussed 

further.  

Additionally, boundary cases of interest are also considered after this discussion to evaluate the 

performance of different controllers on tasks where a classic model predictive controller would not 

be applicable. These include robustness to an incorrect model, and to changing environmental 

conditions and constraints. 

5.4.1 Quality of model learnt in model-based learning 

For model-based RL, the quality of the learnt model is of paramount importance. Since the building 

is simulated in this example, the model predictions can be directly compared against actual 

‘measurements’ for a large number of possible inputs. To visualize the evolution of this model’s 

performance over time, several snapshots were taken from the model at monotonically increasing 

times, i.e. as the neural network gathered more data. Figure 5.6 shows that both the mean error and 

the variance around this error (obtained on an unseen test dataset) decays rapidly over time. The 

neural network exhibits acceptable performance after only a week’s worth of experiences and after 

about 20 days the model has already learnt system dynamics almost perfectly. 

 

Figure 5.6  Model performance over time given as the difference between predicted and measured 

temperature [℃] 



 

56 

 

5.4.2 Flat price signal 

As discussed earlier, the results obtained have to be evaluated along two dimensions of interest: the 

impact on occupant comfort and the consequent energy or cost reductions.  

 

Figure 5.7  Model-free RL performance in time, where the red and yellow plots show the indoor and ambient 

temperature respectively; acceptable band ranges from 19 - 23 °C. 

Figure 5.7 presents the indoor and outdoor temperature evolution for the period under consideration 

with the proposed model-free controller. It is obvious that the model-free controller exhibits a high 

peak indoor temperature during the exploration phase but then settles inside the comfort bounds 

quickly.  

One difference between the model-free and the model-based controller is that the model-free 

controller tried to keep the indoor temperature as close to the lower comfort bound as possible, 

resulting in the heat pump providing some power (i.e. greater than zero) to the building almost 

continuously. This is visualized in Figure 5.8 where it can be seen that the heat pump is in the OFF 

state much less frequently for the model-free controller when compared with its model-based 

counterpart. While this increased the cost somewhat, it had the useful side benefit of reducing the 

peak power demand for heating, which can be beneficial for the overall grid (assuming a number of 

similar heat pumps operating in a neighborhood). 

 

Figure 5.8  The frequency of chosen control action by the RL agent for (left) Model-based; (right) Model-free. 
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In addition to the very different control commands sent by the reinforcement agent, it is also 

instructive to compare the two controllers with the lower and upper performance bounds obtained by 

rule based and ideal model predictive controllers respectively. It is obvious from Table 5.1 that the 

model-free controller outperforms the rule-based controller in terms of cost reduction. At the same 

time, it is also evident that the model-free controller underperforms both the theoretical upper bound 

(achieved by MPC with perfect knowledge of the system model) and the performance obtained by 

model-based RL. The loss of occupant comfort, as calculated by the thermal comfort reward function 

shown in Fig. 5.3, arose mostly during the initial training period where exploratory steps caused wild 

fluctuations of the indoor temperature. These results are summarized in Table 5.1. 

Table 5.1  Experimental results for a flat price profile. 

Algorithm Demand change (%) Cost change (%) Loss of comfort  

Rule based 0 0 0 

Perfect MPC -8.8 -8.8 0 

Model-based RL -7.2 -7.2 0.5 

Model-free RL -6.4 -6.4 5.23 

5.4.3 Dual price signal 

The learning problem becomes more challenging when switching from flat to dual tariffs. However, 

similar behaviour was observed (Figure 5.9). The model-free controller, as before, cycles between 

the ON states for the heat pump much more when compared to the model-based one leading to a 

substantial reduction in peak power consumption both during high and low-price periods. On the 

other hand, the model-based controller has learnt that keeping the heat pump OFF during the high 

price signal is a desirable behaviour. The profiles on the histogram of the model-based controller 

make much more intuitive sense than the one for model-free control as the fraction of ON actions 

during low prices far outnumbers the fraction of ON actions for high price signal. However, as before 

the actions chosen by the model-free controller have a beneficial effect on the local low-voltage grid. 

This is not reflected in the costs shown in Table 5.2 however, which shows that, as before, while the 

model-free controller improves vastly on the rule-based controller; it is still not as efficient as the 

model-based controllers. 

 

Figure 5.9  The frequency of chosen control action by the RL agent for (left) Model-based; (right) Model-free. 
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It is also interesting to note how demand varies as a function of the profile in time. This is visualized 

in Figure 5.10 where it is obvious that when the price is low, the heat pump is turned on more 

frequently. The two controllers have learnt strikingly different behaviours however. The model-based 

controller turns on the heat pump at (close to) full power as soon as the price shifts to low but seldom 

otherwise unless occupant comfort is at risk of being violated. The model-free controller offers a 

much smoother response however with the majority of operations being in the mid-power regime 

regardless of the price point. There is a subtle shift however, with higher power control actions (1200 

W) prioritized when the price signal is low as compared to when it is high. The summarizing rewards 

as well as the cost and energy reductions can be seen in Table 5.2. 

 

Figure 5.10 Temporal behaviour of the RL agent with dual pricing for (left) Model-based; (right) Model-free. 

Table 5.2  Simulation results obtained for a dual price profile. 

Algorithm Demand change (%) Cost change (%) Loss of comfort  

Rule based 0 0 0 

Perfect MPC -5.0 -10.7 0 

Model-based RL -4.9 -10.6 3.2 

Model-free RL -7.7 -8.0 8.0 

5.4.4 Robustness to changing constraints 

In real world settings, occupants can interact with the thermal system of the building to adjust the 

indoor climate according to their needs by altering the temperature setpoint. So far, this setpoint has 

been considered static. When occupants change this setpoint, the reinforcement learning agent has 

to adapt the policy it is following to make sure that it continues to perform in a desired manner. Figure 

5.11 illustrates the case for a temperature setpoint that is first raised and then lowered before being 

set back to the original value. It is evident that model-based learning, where planning is decoupled 

from learning, quickly adapts to the new situation. Model-free learning however performs poorly 

because existing state-action pairs do not correspond to the updated Q-values anymore. By the time 

it has begun to learn the new representation, the constraints have changed again. This reflects an 

aspect of control where model-based learning is better suited than model-free control. However, 
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given sufficient training data, the model-free controller is also theoretically capable of learning 

optimal policies in this shifting-constraints regime. 

 

Figure 5.11  Effect of temporally changing constraints for (left) Model-based; (right) Model-free RL. 

5.4.5 Robustness to incorrect model 

In the previous section, it was highlighted how the presence of a model helps the model-based 

controller to adapt quickly to dynamic conditions. This can, under some circumstances, also be a 

weakness. More specifically, problems can occur if the model learnt by the agent is incorrect or (as 

is more often the case) something changes in the environment. 

To demonstrate this change in the simulation environment, the backup-controller of the heat pump 

has been turned on. This is a simple rule-based controller acting as a filter where control actions are 

overridden if the indoor temperature goes out of the comfort range, turning the heat pump on or off 

accordingly. 𝑇𝑖 is always kept around the desired limits, but the behaviour of the underlying filter also 

needs to be learned for simulating transitions. Results are shown in Figure 5.12 for the model-based 

and model-free controllers. For the model-based agent, close to the comfort boundaries where 

actions are often overridden, the model fails to predict correctly and the search for optimal policy 

goes on a wrong trajectory. Since the model is never learned well during the simulation period, wrong 

commands are issued continuously, and the temperature is regulated entirely by the safety 

controller, resulting in continued comfort violations as the room temperature often is below the lower 

comfort level. As opposed to the model-based controller, the model-free RL is less sensitive to 

changes of the environment dynamics. As seen in Figure 5.12 (right), the controller had no problem 

in learning a good policy and successfully steering the temperature within an acceptable temperature 

region. 

5.5 Conclusion 

This chapter has considered applying different types of controllers to a building model simulation 

with the objective of improving its operation. These operational improvements are made possible by 

the inherent Energy Flexibility in the building’s thermal mass which allows the controller to shift the 

heating demand forward or backwards in time. Results vary with the choice of the price signal; 

however, the overall trends remain quite stable: costs can be reduced substantially with 

reinforcement learning strategies. These findings are summarized in Table 5.3. 
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Figure 5.12  Behaviour of the RL agent when the environment has changed for (left) model-based; (right) 

model-free 

Table 5.3  Comparison of key indicators of model-based and model-free RL. 

Indicator Model-based Model-free 

Data efficiency Low High 

Consumption reduction 4.5-7% 5 -6% 

Cost reduction 7-18% 5.5-10% 

Exploration cost Low High  

Comfort loss Low High 

Computational expense High Low 

By shifting the demand from times when prices are high to times when prices are low means that 

the building under consideration can be used as energy storage. The exact extent of this usage and 

its implications on using building thermal mass for providing services to the electric or thermal grid 

is an area for future consideration. 

While model-free controllers generally under-perform their model-based counterparts, computational 

complexity is one avenue that might cause model-free algorithms to become more attractive for 

control in the future. This is especially true in distributed settings where computational budgets are 

relatively constrained. For instance, for real time planning, control actions have to be generated in 

limited time horizons which might limit the applicability of model-based algorithms. 
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6 A Model Predictive Controller for 
Multiple-Source Energy Flexibility in 
Buildings 

 Reino Ruusu and Ala Hasan, Technical Research Centre of Finland Ltd., VTT 

 
In this chapter, the development and implementation of a new energy management system (EMS) 

used for the optimal interaction of a building with the energy networks is presented. The aim of the 

EMS operation is to reduce the energy cost for electricity and heating of a residential building that 

has multiple options for flexibility in its energy conversion and storage systems. 

The flexibility sources include use of energy storage (electricity in a battery and heat in a hot-water 

storage tank), operation of a Ground-Source Heat Pump (GSHP), electric heating element and best 

management of the renewable electricity and heat generated by onsite PV panels, wind turbine and 

solar-thermal collectors, as well as import and export to the electricity grid and the district heating 

network. 

The EMS is a nonlinear optimization-based model predictive controller (MPC) utilizing successive 

linear programming (SLP), which makes continuous approximations of the discrete control variables. 

The EMS is implemented in a 0.1 h time-step in a simulation environment in Matlab and deals with 

demand and generation data coming from TRNSYS. 

The implemented method is shown to be fast, have a low computational complexity and to be 

accurate compared with a high computational demanding exhaustive search method like Mixed-

Integer Linear programming MILP. 

Results of the building’s energy performance simulation for a whole year indicate reduced energy 

cost and increased average Coefficient Of Performance (COP) of the heating system. A Rule based 

control (RBC) showed that energy matching of onsite-generated heat and electricity with the demand 

is a good rule when the energy export price is lower than the import price. Compared with the RBC, 

the MPC shows better performance depending on the quality of the forecasted data. The EMS is 

also suitable for online real-life control of building’s energy system operation. 

6.1 Building and system description 

The EMS is used here in a simulation study for the performance of a 150 m2 single-family house 

located in Helsinki Finland that has different sources of onsite renewable energy harvesting and 

storage. The building’s energy system is shown in Figure 6.1. It is composed of: 

 PV panels 30.27 m2  

 Small-scale wind turbine (4 kW) 

 Solar-thermal collectors SolT (8.6 m2) 

 Ground source heat pump GSHP (heat output/COP: 4.5 kW/3) at operating temperatures of 

60/0 °C. 

 Two compartments stratified hot water storage tank (HWST) (0.5 m3) 

 Electric heating element (EH) at the top of the tank (6 kW, efficiency 0.95) 
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 Electric battery (12 kWh effective capacity) 

 Connections to the electrical and thermal networks 

 

Figure 6.1 Components of the house energy system. 

The house space heating system is a low temperature (40 °C supply/30 °C return) hydronic radiator 

heating. One important detail in the operation of the energy system is the configuration of the different 

heat flows inside the HWST and its connections (Figure 6.2). Water is circulated for space heating 

(SpH) from the tank at a minimum temperature of 40 °C. The GSHP supplies heat to the tank at a 

maximum temperature of 60 °C. The electric heating element (EH) is located in the upper part to 

keep a minimum temperature of 60 °C for the domestic-hot water (DHW) but can increase the 

temperature to a maximum of 90 °C when feasible. 

The connection of the DHW two heat exchangers in series (for pre-heating in the lower part and after 

heated by the electric heating element in the upper part – see Figure 6.2) is one main source of non-

linearity in this system. Heat can also be taken from a low-temperature district heating network for 

both space heating and DHW. Heat produced by the solar-thermal collector can be exported to an 

assumed low temperature return line of the district heating network, which is done by the brine 

flowing back from the HWST to the collector when the tank average temperature is higher than 68 

°C 

The EMS aims at covering the building’s heat and electricity demands by optimal use of the GSHP, 

EH and the energy stored in the battery and HWST taking into consideration the next 24 hours 

forecast of onsite renewable energy harvest and the demand of the building and energy price using 

0.1 h time-steps.  
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Figure 6.2 Piping and connections of the hot-water storage tank (HWST). 

6.2 Methodology: control strategies 

The objective is to develop a method to minimize energy cost using optimization methods, which 

should be computationally fast enough to perform full year simulations in  a maximum of few days. 

This is important in both the simulation environment and the real-time operation. The proposed 

method allows performing whole-year simulations for a non-linear system of non-trivial complexity 

using 0.1 h and even shorter time-steps. The performance of the MPC during a whole calendar year 

can be evaluated in only a few days using a detailed simulation model of the energy system(Ruusu 

et al., 2019). 

6.3 Results and conclusion 

Samples of results of the performance of the EMS for the direct flexibility quantification are 

demonstrated in this section. Figures 6.3, 6.4 and 6.5 present the case when the exported energy 

price from the building to the grids is lower than the import price. These three figures show the 

simulation results for one day in April, which is extracted from the full year simulation performance 

demonstrating a sample of the results for ease of the analysis. The indicated numbers on the x-axis 

are the simulation time-steps, each of 0.1 h. The contents of these figures show, from top to 

bottomdecides to charge electricity to the battery, after that it supercharges the hot-water tank to a 

higher temperature by using the electric heating element before exporting any left energy to the 

grids. 

The behaviour of the RBC according to the above-mentioned logic can be seen in the simulation 

results of the day under consideration in Figure 6.3. The increased generated electricity goes to the 

battery, where the battery state of charge starts to increase at around time-step 70 (7 am) until it is 

full at around time-step 100 (10 am). After that, the electric heating element is used extensively until 

it reaches its full power of 6 kW, which brings the top of the HWST to the highest temperature of 90 

°C. After having the battery filled and the water tank at the highest temperature, the system starts to 

export electricity to the grid (bottom graph). The solar-thermal collector heat can be exported to the 
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district heating network when the temperature of the bottom of the HWST is higher than 68 °C, which 

was only possible for some instants when the tank was at its highest temperature.  

The model predictive controller behaviour is presented in Figures 6.4 and 6.5 with two forecast 

assumptions: perfect forecast and past 24 hours forecast. Perfect forecast (Figure 6.4) refers to 

using the exact data of demand and generation for the next 24 hours in the optimization allowing to 

explore the maximum utilization of the flexibility potential of the energy system. On the other hand, 

Figure 6.5 shows the model predictive controller behaviour using past 24 hours data that assumes 

repetition of demand and generation copied from the past 24 hours. 

In Figure 6.4, the EMS starts to export the generated electricity at time-step 70 (7 am) when the 

electricity export price is higher. The temperature of the lower part of the HWST starts to increase at 

time-step 80 (8 am) by the GSHP operation, after that the solar-thermal collector starts to charge the 

tank at around time-step 90 (9 am) followed by using the electric heating element at around time-

step 100 (10 am) first with limited capacities. This brings the tank to a maximum temperature of 70 

°C. However, the EMS is not pushing it towards a very high temperature in order to minimize the use 

of the low COP electric heating element thus trying to keep all parts of the tank at a closer range of 

temperatures. Battery charging is shifted to low export price times starting at time-step 120 (12 noon) 

and the EMS finds it feasible not to push it to a full-charge state. 

In Figure 6.5, the EMS starts charging the battery at time-step 70 (7 am), even though it should take 

advantage of the high electricity price to export. This is because it expects low generation during the 

day based on the past 24 hours data. Accordingly, it is driving the battery to be fully charged, which 

stays so for the whole day because the demand is covered by the increased generation. After that, 

it starts alternatingly to run the electric heating element and export electricity. The HWST 

temperature starts to increase due to both the solar-thermal heat and the electric heating element 

operation pushing the top of the tank to reach 90 °C with a large difference between the top and 

other layers of the tank. It is clear that the inconsistent operation of the EMS with the generation is 

due to its dependency on poor forecasting of repetition of the past 24 hours data. 

Table 6.1 indicates the net yearly results for the income for two cases using the RBC and using the 

model predictive controller (MPC). In Case 1, the energy export and import prices are equal, while 

in Case 2, the export price is lower than the import price. The MPC results are indicated using the 

two forecasting approaches; past 24 hours forecast and perfect forecast. 

It is clear from the results that imports from the district heating were almost negligible in all cases. 

This is due to the high use of the GSHP, which has a high COP, making it cheaper than importing 

heat from the district heating. 

In Case 1, the total annual income of the two MPC strategies with past 24 hours and perfect forecast 

are close. This indicates that using the imported energy or the onsite harvested energy are of similar 

values since the import and export prices are equal, which makes it possible to use the grid as a 

storage by importing and exporting larger amounts of energy according to the price fluctuations. On 

the other hand, the RBC appears to make much lower income due to its limited interaction with the 

grids due to its focus on the instantaneous needs.  
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Figure 6.3 Rule-based controller behaviour on the 8th of April with 0.1 h time-step. 
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Figure 6,4 Model predictive controller behaviour on the 8th of April with 0.1 h time-step: Case 2 using the perfect 

forecast. 
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Figure 6.5 Model predictive controller behaviour on the 8th of April with 0.1 h time-step: Case 2 using the past 

24 hours as forecast. 
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matching of the onsite harvested energy with the demand is a good strategy when there is lower 

export price, thus avoiding imports at a high price.  

Income from the solar-thermal collector heat export to the district heating is close in each case and 

is not affected by the control strategy. This is due to the set temperature of 68 °C at the bottom of 

the tank to allow heat export.  

Table 6.1  Net yearly income: Case 1 (equal energy import and export prices) and Case 2 (lower energy 

export prices). 

 

The developed MPC method is shown to be fast and thus suitable for use in detailed simulation-

optimization evaluations of multiple flexibility sources. Energy matching of onsite harvested energy 

with the demand is shown to be a suitable control method when the energy export price is lower than 

the import price. The MPC performance is shown to be affected by the quality of the forecasting 

data.  

A description of the mathematical background of the developed MPC and its performance in the 

simulation environment is presented in details in (Ruusu et al., 2016) and (Ruusu et al., 2016). 

Description of the performance of a test facility that uses this developed MPC EMS in real-time 

operation is presented in Deliverable 6 - Test procedure and results. Description of that facility before 

integrating the EMS is presented in (Kilpeläinen et al., 2018).  
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7 Model predictive control for carbon 
emissions reduction in residential 
cooling loads 

 Thibault Péan, Catalonia Institute for Energy Research, Spain 

 
A model predictive control (MPC) strategy aiming at reducing the operational CO2 emissions is tested 

on a residential building equipped with a reversible heat pump. Through a co-simulation study on a 

three days summer period, the performance of the controller is evaluated in cooling mode: it enables 

to save 19.1 % emissions compared to a standard thermostatic control. The control algorithm, its 

implementation and the development efforts are also discussed. 

7.1 Building and system description 

The building case-study is a residential flat of 110 m2 net heated floor area, located in the Terrassa 

(Barcelona), Spain and inhabited by a family of four people. The 3D model, a photograph and the 

floor plan are shown in Figure 7.1. The building comprises 4 bedrooms, a living room, kitchen and a 

bathroom. It was built in 1991 and forms part of a multi-family-dwelling of 4 floors. A model of the flat 

was created and validated in TRNSYS (Ortiz et al., 2016), this model is used here, so the presented 

study consists only of simulation work. Furthermore, a refurbished version of the building is 

considered: a layer of 12 cm insulation is added within the external walls, bringing the U-value of 

these walls down to 0.20 W/(m2.K), compared to 0.60 W/(m2.K) before. The occupancy by the four 

family members is modelled stochastically. 

 

Figure 7.1  3D model, photograph, and floor plan of the studied building.  

The building is conditioned by a circuit of Fan Coil Units (FCU), which are supplied by an air-to-water 

heat pump. The heat pump is reversible; thus, it can work in cooling mode in summer and heating 

mode in winter. Furthermore, the frequency of its compressor can be controlled in a certain range, 

thus it is a variable speed heat pump (VSHP). The indoor unit of the VSHP contains a 200 liters tank 

for storing domestic hot water (DHW).  
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The control strategies apply to the whole HVAC system. The commands are sent directly to the heat 

pump, ordering it to function either for space heating/cooling (SH/SC) or for DHW production, and at 

which supply temperature. When the heat pump is activated for SH/SC, the same commands are 

sent to the FCU so that they run in a synchronized way. Furthermore, the control strategies for 

heating and cooling apply to the overall apartment at once, there are no independent individual 

controls in the rooms.  

7.2 Methodology: control strategies 

A Model Predictive Control strategy is implemented in the building to control the heat pump and the 

FCU systems. The present study focuses on the cooling mode, therefore, only results from the 

summer season will be presented. The MPC control strategy intends to minimize the CO2 emissions 

resulting from the electricity use of the heat pump system, hence aiming at reducing the impact of 

the HVAC systems use on the environment and climate change.  

To this end, an external penalty signal is utilized: this signal represents the marginal CO2 emissions 

of the electrical grid every hour. The marginal emissions factor (MEF) takes into account the merit 

order in which the plants are activated to supply the demand at a national scale (in Spain in the 

present case), and their respective emission factors. It represents in a more accurate way the 

savings that can occur after demand-side management or flexibility actions: these fluctuations will 

be absorbed by certain peak power plants for example, but the operation of the base power plants 

will not be affected, and this is thus reflected in the MEF. In the present case, a model of the marginal 

emissions factor for the Spanish grid was developed based on analysis of past data (Péan et al., 

2018a). These raw data consisted of the hourly energy mix of Spain during one entire year (2016) 

and enabled to identify the CO2 intensity of that grid, knowing the CO2 emissions associated with 

each source of electricity. 

The applied MPC strategy belongs to the class of indirect controls: it is provided with an external 

fluctuating signal, and will intend to shift the loads to where this penalty signal is the lowest. To 

achieve this objective, energy is stored in thermal form in the mass of the building and in the water 

tank for DHW.  

The MPC optimization problem takes the form of Problem 1 shown hereafter. The model is a classical 

state-space model used to estimate the dynamics of the building envelope and was represented as 

a resistance-capacitance (RC) network with three states 𝒙 = [𝑇𝑖𝑛𝑡  𝑇𝑤   𝑇𝑇𝐸𝑆]
𝑇, the temperatures in 

the inside zone, at the surface of the walls and in the Thermal Energy Storage (TES) tank. The MPC 

determines the controllable inputs 𝒖 = [𝑄𝑆  𝑄𝑇𝐸𝑆]
𝑇 , the thermal powers that the heat pump must 

deliver to the fan coils or the tank. As external inputs 𝒆 = [𝑇𝑎𝑚𝑏  𝐼𝐻  𝑄𝑜𝑐𝑐   𝑄𝐷𝐻𝑊]
𝑇 , the outside 

temperature, the solar irradiation, the heat due to occupants and the DHW tappings are taken into 

account by the model (forecasted perfectly in the MPC framework). The model is also described in 

(Péan et al., 2018b). 

 

 

 

 

 



 

71 

 

Problem 1 – Model Predictive Controller 

Objective: 
min
𝑢,𝛿

[𝛼𝜀𝐽𝜀 + 𝛼∆𝑢𝐽∆𝑢 + (1 − 𝛼𝜀 − 𝛼∆𝑢)𝐽𝐶𝑂2] 

Subject to: 

     ∀𝑘 ∈ ⟦1, 𝑁⟧ 

     Model: 

         {
𝒙(𝑘 + 1) = 𝑨 ∙ 𝒙(𝑘) + 𝑩𝒖 ∙ 𝒖(𝑘) + 𝑩𝒆 ∙ 𝒆(𝑘)

𝒚(𝑘 + 1) = 𝑪 ∙ 𝒙(𝑘)                                              
 

     Constraints on the inputs: 

     

{
 

 𝛿𝑆(𝑘) ∙ 𝑄𝑆𝐶 ≤ 𝑄𝑆𝐶(𝑘) ≤  𝛿𝑆𝐶(𝑘) ∙ 𝑄𝑆                         𝑤𝑖𝑡ℎ [𝑄𝑆𝐶 ; 𝑄𝑆𝐶] = [−8 𝑘𝑊 ; −2.5 𝑘𝑊]

𝛿𝑇𝐸𝑆(𝑘) ∙ 𝑄𝑇𝐸𝑆 ≤ 𝑄𝑇𝐸𝑆(𝑘) ≤  𝛿𝑇𝐸𝑆(𝑘) ∙ 𝑄𝑇𝐸𝑆         𝑤𝑖𝑡ℎ [𝑄𝑇𝐸𝑆; 𝑄𝑇𝐸𝑆] = [10 𝑘𝑊 ;  10 𝑘𝑊]

𝛿𝑆(𝑘) + 𝛿𝑇𝐸𝑆(𝑘) ≤ 1                                                                                                                            

 

     Constraints on the outputs: 

          {
𝑇𝑖𝑛𝑡(𝑘) ≤  𝑇𝑖𝑛𝑡(𝑘) + 𝜀(𝑘)     𝑤𝑖𝑡ℎ 𝑇𝑖𝑛𝑡 = 26 ℃         (𝜀 ≥ 0)

𝑇𝑇𝐸𝑆 − 𝜀(𝑘) ≤ 𝑇𝑇𝐸𝑆(𝑘)        𝑤𝑖𝑡ℎ 𝑇𝑇𝐸𝑆 = 50 ℃         (𝜀 ≥ 0) 
  

 

The cost function comprises three distinct objectives: a smoothing term 𝐽∆𝑢, a comfort term 𝐽𝜀, and a 

CO2  minimization term 𝐽𝐶𝑂2. The smoothing term penalizes too many consecutive changes in the 

control actions, to avoid oscillatory behavior of the systems. The comfort term penalizes excursions 

outside the hard comfort constraint ranges: upper bound of 𝑇𝑖𝑛𝑡 = 26 ℃ in the zone and lower bound 

of 𝑇𝑇𝐸𝑆 = 50 ℃ in the tank. These hard constraints are softened with the 𝜀 slack variable which is 

included in the comfort objective 𝐽𝜀 . The actual flexibility objective is 𝐽𝐶𝑂2, it corresponds to the 

emissions due to the electricity use of the heat pump: 

𝐽𝐶𝑂2 =∑𝑃𝑒𝑙,𝐻𝑃(𝑘)

𝑁

𝑘=1

∙ 𝑀𝐸𝐹(𝑘) 7.1 

The electricity consumption (in kWh) of the heat pump 𝑃𝑒𝑙,𝐻𝑃 depends on its thermal power 𝑄, and 

is determined through a model based on experimental tests data. The hourly MEF is derived from 

the model previously mentioned and is expressed in kgCO2/kWh. The whole cost function must be 

minimized over a time horizon of 24 hours, which enables to capture daily patterns. 

The three objectives are weighted in the overall cost function by the coefficients 𝛼𝜀 and 𝛼∆𝑢. To 

determine appropriate values of the weighing coefficients, Pareto curves are plotted as shown in 

Figure 7.2. The points situated more in the hollow of the curve present the best balance between the 

different objectives. In the present case, 𝛼∆𝑢 = 0.01 and 𝛼𝜀 = 0.15 were chosen. It should be noted 

that the choice of these coefficients can greatly affect the performance of the MPC controller, since 

this will determine whether it emphasizes more the flexibility while sacrificing the comfort of the 

occupants, or if it won’t make any compromise on the comfort but then will not provide sufficient 

flexibility.  
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Figure 7.2  Pareto curves to find appropriate values of the weighting coefficients (Péan et al., 2019). 

7.3 Implementation: control algorithms 

The aforementioned control strategy is implemented in a co-simulation platform presented in Figure 

7.3. The TRNSYS detailed model is used as the building on which the MPC controller can be tested. 

The controller is externalized in MATLAB to benefit from its stronger optimization features. The link 

between both software packages is realized with the Type155 of TRNSYS. 

 

Figure 7.3  Co-simulation platform with TRNSYS and MATLAB (Péan et al., 2019). 
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The algorithm of the MPC is written in MATLAB code. To this end, the YALMIP tool is used to 

facilitate its formulation (Lofberg, 2004). YALMIP enables to declare the optimization variables 

(continuous or integer variables) and formulate the optimal control problem including the 

minimization objective and the constraints. This tool also facilitates the interface with different 

external solvers, and thus enables to solve many different types of optimization problems.  

In the present case, both integer (switching binary variables) and continuous (thermal powers) 

variables are present within the optimal control problem. The presence of the integer variables 

complicates the optimization problem substantially. However, they enable to switch between DHW 

production and space cooling mode and to force a minimum level of power whenever the heat pump 

is switched on and are therefore indispensable. Because of the nature of the problem, MATLAB must 

resort to mixed-integer programming to solve it. 

Once the problem is formulated with YALMIP, the GUROBI solver is called (Gurobi Optimization, 

2018a). GUROBI utilizes a branch-and-bound algorithm (Gurobi Optimization, 2018b). Several 

options can be passed from MATLAB to the solver through YALMIP, like for example a time limit for 

the calculations, a maximum number of iterations, or the tolerance at which the convergence 

calculation will be stopped. 

7.4 Results and conclusion 

The MPC CO2 minimization strategy is tested with the co-simulation platform on 3 selected days of 

summer 2016. Time series are presented in Figure 7.4, and summed indicators in Table 7.1, through 

a comparison with a standard thermostatic control case. 

 

Figure 7.4  Time series of the MEF penalty signal (top), the electrical use of the heat pump in the reference 

and MPC CO2 case (second), power difference between these two cases, and finally the 

cumulated ME savings (bottom) (Péan et al., 2019). 
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Table 7.1  Summary of the energy and emissions metrics of the MPC CO2 case compared to the reference 

case with thermostat. 

MPC objective case  MPC CO2 

Thermal energy use compared to reference case [kWh] -15.35 

 [%] -18.8% 

Electricity use variation compared to the reference case [kWh] -5.15 

 [%] -16.6% 

Average CO2 emissions variation compared to the reference case [kgCO2] -1.22 

 [%] -16.8% 

Marginal CO2 emissions variation compared to the reference case [kgCO2] -1.39 

 [%] -19.1% 

Flexibility factor [ - ] 0.34 

 
A certain load shifting occurred towards the periods of lower emissions, although the reference case 

already used little energy in the high emissions periods so there was little room for improvement. 

The flexibility factor (Le Dréau and Heiselberg, 2016) is chosen as KPI for evaluating the load 

shifting: it is calculated with 𝐹𝐹 = (∫ 𝑃𝑒𝑙𝑙𝑝
− ∫ 𝑃𝑒𝑙ℎ𝑝

) / (∫ 𝑃𝑒𝑙𝑙𝑝
+ ∫ 𝑃𝑒𝑙ℎ𝑝

), where ∫ 𝑃𝑒𝑙𝑙𝑝
 is the integral 

of the heat pump consumption during low-price periods (ℎ𝑝 respectively for high price periods). 𝐹𝐹 

should therefore ideally be 1 if all the energy is used in low emissions periods. In the present case, 

the flexibility factor was increased from 0.28 to 0.34. The amplitude of the load-shifting is thus rather 

small. The overall operation dictated by the MPC strategy resulted in 19.1 % savings in CO2 marginal 

emissions. The MPC strategy lowers the delivered thermal energy to the building, leading to a small 

decrease of the occupants’ comfort, as shown in Figure 7.5, however the acceptable range 

(Category III) is always maintained.  

 

Figure 7.5  Percentage of times in the comfort ranges, as defined in the standard EN 15251 (CEN, 2007) by 

ranges of operative temperatures for the cooling season. 

The achieved savings are significant, although they are mainly due to a reduction of the energy use, 

less so from the load shifting. In fact, the load shifting is rather limited in the present case and that 

might be due to the penalty signal used, as shown in the top graph of Figure 7.4: this signal does 

not present very large variations, and therefore does not differentiate clearly between periods of 

lower emissions from the periods of higher emissions. In the case of a price signal for instance, the 

clear discrepancy between day and night tariffs (e.g. 60 €/MWh at night and 120 €/MWh during the 

day, hence doubling the price) facilitates the task of the MPC by highlighting more clearly the periods 

of lower penalty. The MEF signal has been chosen because it presents larger variations than the 
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average emissions factor, but it might not be sufficient, and designing a new penalty signal based 

on the CO2 emissions might yield better results. 

The development and computational burdens of the MPC should also be discussed. Creating an 

MPC controller requires simplified models of the building and of the heat pump performance. These 

tasks require a lot of resources, since many adaptations are needed depending on the building 

typology, the HVAC systems in use, the season etc.. Fine-tuning all the parameters of the MPC is 

very important for the good performance of the controller, therefore this task cannot be eluded. This 

obstacle partly explains the still low penetration of MPC controllers for HVAC control in real buildings. 

Furthermore, in the present case the nature of the problem (mixed-integer programming) resulted in 

high solving times. This computational burden and the consequent constraints should be taken into 

account for real implementations. It is hoped that the constant improvement in computational 

performance will make this barrier less significant in the future.  

This work features only simulation work and neglects the dynamics of the heat pump, i.e. if the MPC 

decides to supply heat during one hour with water at 50 °C, the current TRNSYS model will provide 

exactly that. In reality, the inertia and dynamics of both the building and the heat pump play an 

important role and create transient effects that the MPC ignores in its current form. Especially at 

start-up, the delays and the slow ramping before reaching the desired setpoint create important 

discrepancies between the plan anticipated by the MPC and the actual operation of the systems. 

These dynamic effects should be studied with real heat pump systems in laboratory or real-building 

setups. When implementing such controls with a real heat pump, the actual commands sent to the 

systems should be considered carefully: not all the parameters can be controlled directly, a lot of 

protection and local controllers operate the heat pump and its components at a lower control level, 

therefore the interaction with the higher level MPC is not always straightforward.  
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8 Investigation of the Energy Flexibility of 
a residential net-zero energy building 
involved with the dynamic operations of 
hybrid energy storages and various 
energy conversion strategies 

 Yuekuan Zhou and Sunliang Cao, The Hong Kong Polytechnic University, Hong Kong SAR, 

China 

 
This section aims to quantitatively investigate the Energy Flexibility of a residential net-zero energy 

building (NZEB) in the cooling dominated region, Hong Kong. An interactive energy sharing network 

with various integrated systems was formulated and demonstrated through a building-vehicle energy 

system. The integrated systems include the on-site renewable system, hybrid thermal storage 

systems, a static battery, and a mobile battery of an electric vehicle. Different rule-based control 

strategies were proposed and contrasted in terms of the Energy Flexibility enhancement of the 

interactive energy sharing network. Moreover, to fully utilize the Energy Flexibility provided by the 

hybrid thermal storage systems, technical solutions were proposed, such as the excess renewable-

thermal storage recharging strategy and the structural thermal mass of the building. Simulation 

results for different scenarios are presented to demonstrate and verify the effectiveness of the 

proposed technique.  

8.1 Building and system description 

The simulated single-family house is located at New Territory, a suburb in Hong Kong (22.3 ºN, 

114.2º E). Geometrical parameters of the simulated building are shown in Figure 8.1. The length and 

the width of the building are both 10 m. Each floor has the net floor area of 100 m2. The height of 

each floor is 3 m. There are four different thermal zones on each floor, including a living room, a 

bedroom, a kitchen and a washroom. The window-wall ratio is 30 %, which is common for residential 

buildings in Hong Kong (Ghisi et al. 2004). The annual cooling degree days (base temperature of 18 

ºC) and the annual solar radiation on a horizontal surface are 284 K and 1423.3 kWh/(m2 a), 

respectively. Figure 8.1 shows the meteorological parameters in Hong Kong. The monthly average 

ambient temperature varies between 16 and 28.2 ºC. The monthly solar radiation on a horizontal 

surface varies between 63.6 and 168 kWh/(m2 mon). Moreover, compared to the monthly solar 

radiation, the monthly average wind speed (10 m above the ground) is more stable with the 

fluctuation range between 4.6 and 5.7 m/s, except for July with a magnitude of 3.6 m/s. 
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Figure 8.1 Geometrical parameters of the simulated single-family house. 

 

Figure 8.2 Meteorological parameters in Hong Kong: (a) The monthly average ambient temperature; (b) The 

monthly average wind speed and the monthly solar radiation on a horizontal surface.  

8.1.1 Parameters for the building facade, the infiltration and internal gains  

Table 8.1 lists the parameters of the building envelope according to (Burnett et al. 2004). The 

infiltration coefficient is calculated by the equivalent air change rate of 0.5 per hour (Burnett et al. 

2004).  
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Table 8.1  Parameters of the building envelope (Burnett et al. 2004). 

External Walls 
(front/inside) 

Thickness 
(m) 

Material λ (W/m K) ρ (kg/m3) Cp (J/kg K) 
Absorptivity 
(α) 

Layer 1 (outside) 0.005 Mosaic titles 1.5 2500 840 0.58 

Layer 2 0.01 
Cement/sand 
Plastering 

0.72 1860 840  

Layer 3 0.1 Heavy concrete 2.16 2400 840  

Layer 4 (inside) 0.01 
Gypsum 
plastering 

0.38 1120 840 0.65 

Roofs 
(front/inside) 

      

Layer 1 0.025 Concrete tiles 1.1 2100 920 0.65 

Layer 2 0.02 Asphalt 1.115 2350 1200  

Layer 3 0.05 
Cement/sand 
Screed 

0.72 1860 840  

Layer 4 0.05 
Expand 
Polystyrene 

0.034 25 1380  

Layer 5 0.15 Heavy concrete 2.16 2400 840  

Layer 6 0.01 
Gypsum 
plastering 

0.38 1120 840 0.65 

Windows       

Layer 1 0.006 Tinted glass 1.05 2500 840 0.65 

The annual internal heat from the lighting and electrical appliances are 36.8 and 36.9 kWh/(m2 a), 

respectively. There are 6 occupants in the single-family house. The average internal heat gain 

(including both the sensible and the latent) from each occupant is 126 W with respect to the metabolic 

rate of 1.2 MET and the clothing insulation of 0.6 Clo. The total heat gain of each zone is dependent 

on the occupants’ schedule, which can be found in the reference (Burnett et al. 2004). 

8.1.2 Building services system 

The natural ventilation system is manually operated by opening windows unless the outdoor 

temperature is higher than 22 ºC (Burnett et al. 2004). The air change rate of the mechanical 

ventilation is 5 ACH according to (HVAC 2012). The volume flow rate of the fresh air is 1 l/(m2s), 

which is within the range between 0.36 and 2.7 l/(m2s) as shown in the reference (Burnett et al. 

2004). A total heat recovery system (rotatory wheel) is designed in the system for recovering of the 

cooling energy of the exhaust air to pre-cool the fresh air. The sensible and the latent efficiencies of 

the rotatory heat recovery system are 0.85 and 0.5, respectively. The desired supply air temperature 

is 18 ºC in the system. Air source chillers are designed to cover both the air handling unit (AHU) 

cooling load and the space cooling (SC) load. The heating load, which is covered by the electric 

heater, is 5.3 kWh/(m2a). A solar thermal collector system is designed with a tilted angle, an azimuth 

angle and an area of 18º, 0º (facing directly southern) and 9 m2, respectively. The total number of 

occupants is six, and the specific daily DHW consumption is 0.12 m3/(person) (PRCMC 2002). 

Moreover, the AHU cooling storage tank (ACST) and the space cooling storage tank (SCST) are 

designed to cover the daily AHU cooling load and the daily space cooling load with the volume/height 

of 1.5 m3/1.15 m and 0.5 m3/0.84 m, respectively. The volume/height of the DHW tank is 1 m3/1.08 

m. The heat transfer coefficient to the ambient of each tank is assumed to be 0.3 W/(m2K). To meet 

the building energy demand, both the AHU cooling chiller (called the normal AHU cooling chiller) and 

the SC cooling chiller (called the normal space cooling chiller) are designed to charge the ACST and 
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SCST, respectively. In addition, when the renewable generation is higher than the basic electric load, 

the surplus renewable electricity can be operated to charge the ACST (called the excess REe-ACST 

recharging strategy), or to charge the SCST (called the excess REe-SCST recharging strategy), or 

to charge the DHWT (called the excess REe-DHW recharging strategy).The control scope includes 

the indoor air set-point temperature of each thermal zone, the excess renewable-recharging thermal 

systems and the excess renewable-recharging battery systems. The water flows through the DHW 

tank before being heated by the auxiliary electric heater to the required temperature of 60 ºC. The 

cooling system includes an AHU cooling chiller, an ACST, a space cooling (SC) chiller, a SCST and 

control pumps. Moreover, two excess renewable-recharging chillers are installed for recharging the 

ACST and the SCST with the assumed nominal COP of 2.1 and of 2.6 (considering the outlet 

temperature of chilled water at 1 ºC and 9 ºC), respectively. Table 8.2 lists the parameters of the 

cooling system. The nominal COPs of both normal chillers are assumed to be 3.6.  

Table 8.2. Parameters of the thermal storage tanks, the heat transfer fluid and the devices. 

 Normal AHU 
cooling chiller 

Excess REe-
ACST 
recharging 
chiller 

Normal space 
cooling chiller 

Excess REe-
SCST 
recharging 
chiller 

Excess REe-
DHWT  

 Nominal COPa: 
3.6 

Nominal COPb: 
2.1 

Nominal COP: 
3.6c 

Nominal COP: 
2.6d 

 

Set-point 
temperature 

7 ºC 1 ºC 15 ºC 9 ºC 60-100 ºC 

Heat transfer 
fluid 

Water  
20 vol% 
Ethylene 
Glycol 

Water  Water  Water  

Size of thermal 
storage tanks  

1.5 m3, 1.15 m height 0.5 m3, 0.84 m height 
1 m3 volume, 
1.08 m height 

a  nominal cooling conditions: Evaporator water inlet/outlet temperature 12/7 °C, external air 
temperature 35 °C; 

b  The assumed COP, nominal cooling conditions: leaving chilled water temperature of 0 ºC, external 
air temperature of 35 ºC; 

c  nominal cooling conditions: Evaporator water inlet/outlet temperature 12/7 °C, external air 
temperature 35 °C; 

d  The assumed COP, nominal cooling conditions: Evaporator water inlet/outlet temperature 12/7 °C, 
external air temperature of 35 ºC. 

8.1.3 The renewable system, the battery and the electric vehicle 

There are two on-site renewable systems, including the building integrated photovoltaics (BIPVs) 

and the micro-wind turbine. The efficiency of the BIPV is 0.1427 under the provided reference 

condition: a reference temperature of 25 ºC and a reference radiation of 1000 W/m2. The modelled 

private electric vehicle is the NISSAN LEAF (NISSAN LEAF Specs) with the nominal battery storage 

capacity of 24 kWh. The average daily travelling distance is 31.2 km according to the Hong Kong 

private transportation report (TCSFR 2011). The nominal storage capacity of the static battery is 24 

kWh. The energy interaction between buildings and vehicles can decrease not only the emissions, 

but also the energy consumption of buildings and transportations (Zhou et al. 2019; Zhou and Cao, 

2019c). 
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8.2 Methodology: control strategies 

In terms of effectively managing the on-site surplus renewable energy (after covering the building-

basic electric load) and covering the building energy demand with the higher Energy Flexibility, an 

energy control strategy has been proposed regarding different energy storages in the system. The 

principle for the energy management is peak load shaving and valley filling via the hybrid energy 

storages. As shown in Figure 8.3, the electricity generation from the hybrid renewable system, GREe, 

is firstly used to cover the basic electric load. Afterwards, the surplus renewable energy, PGen,surp 1, 

is used to charge the electric vehicle before recharging the hybrid thermal storages. It should be 

noticed that, the excess renewable-recharging sequences of the hybrid thermal storages will be 

specifically discussed as shown in Table 8.4, Section, 8.4.1. The surplus renewable energy after 

recharging the hybrid thermal storages is used to charge the static battery before being exported to 

the electric grid. Whenever the basic electric load is higher than the renewable energy, the static 

battery is discharged before discharging the electric vehicle. The rest of the electric load is covered 

by importing electricity from the grid. 

 
 

Figure 8.3  The schematic configuration and the energy control strategy. (Note: the green line indicates the 

flow of the surplus renewable electricity; the red solid line indicates the electricity flow during the 

renewable shortage period; the red dash line indicates the impact of the excess renewable-

recharging strategies on the basic electric load. The energy flow in the figure only shows one 

case, and the excess renewable recharging strategy is case-dependent, as shown in Table 8.4, 

Section, 8.4.1.) 
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8.2.1 Demand responsive energy control strategy  

 In order to investigate the impact of different energy sources, i.e., renewable sources and static 

battery storage, on the building Energy Flexibility, two energy control strategies were proposed and 

compared: the “REe-to-demand control strategy (Control strategy 1)” and the “battery-to-demand 

control strategy (Control strategy 2)”. As shown in Figure 8.4, Control strategy 1 indicates that the 

basic electric load is firstly covered by the on-site renewable energy, and then it is covered by the 

electricity discharged from the battery. In the Control strategy 2, the battery is discharged to cover 

the basic electric load first, and then the remaining electric load is covered by the renewable energy. 

The remaining electric load shortage is covered by the electricity imported from the grid. 

 

Figure 8.4  (a) The “REe-to-demand control strategy (Control strategy 1)”; (b) The “battery-to-demand control 

strategy (Control strategy 2)”. 

8.2.2 Structural thermal mass storage 

In addition to recharging the electrical storage, the on-site surplus renewable energy can also be 

managed to recharge the building thermal mass for the Energy Flexibility enhancement. When the 

on-site renewable electricity is higher than the basic electric load, i.e., Psurp is greater than zero, the 

surplus on-site renewable electricity can be converted to the cooling energy and was then stored in 

the building facade by lowering the indoor air set-point temperature, Tset,indoor. When the on-site 

renewable electricity is lower than the basic electric load, the cooling energy in the building facade 

can be discharged to meet the indoor thermal comfort, reducing the operational time-duration of the 

chiller. The indoor air setpoint temperature is defined by Equation (1). The indoor thermal comfort 

range is between 18 and 26 ºC. 

Tset,indoor=24−∆T×GT(Psurp,0)                                                                    (1) 

where ∆T is the temperature difference deviating from the baseline of the indoor air set-point 

temperature. GT is the function as shown below. 
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GT(P  r ,0)= {
1   when  P  r >0

0  when  P  r ≤0
                                                                      (2) 

8.3 Implementation: control algorithms 

Figure 8.5 demonstrates the energy flow chart of Control strategy 1. The renewable surplus/shortage 

period refers to the time-duration when the on-site renewable generation is higher/lower than the 

basic electric load. As shown in Figure 8.5, during the renewable shortage period, the basic electric 

load is covered by the electricity discharged from the static battery, and then the basic electric load 

is covered by the electricity discharged from the electric vehicle battery before being covered by the 

electricity imported from the grid. During the renewable surplus period, the surplus renewable 

electricity is used to recharge the electric vehicle (EV), the hybrid thermal storage systems and then 

to recharge the static battery before being exported to the grid. The overall efficiency of the regulator 

and the inverter is 95 %. The upper and the lower limitations of the fractional state of charge 

(FSOCbattery) of the batteries are 0.3 and 0.9, respectively. The charging efficiency is assumed to be 

90 %. 

The energy flow of Control strategy 2 is shown in Figure 8.6. During the renewable surplus period, 

the surplus renewable electricity is used to charge the vehicles, the hybrid thermal storage systems 

and the static battery before being exported to the grid. During the renewable shortage period, the 

basic electric load is covered by the electricity discharged from the static battery and then from the 

electric vehicle battery before being covered by the electricity imported from the grid. 

Table 8.3 summarizes the flexibility indicators proposed in (Zhou and Cao. 2019a). The proposed 

indicators include flexible power, flexible energy and the capability of the energy flexible building for 

shifting the flexible energy to the renewable surplus or the renewable shortage period. 

8.4 Results and conclusion 

As shown in Figure 8.7(a), compared to the “battery-to-demand control strategy (Control strategy 

2)”, more flexible energy can be provided by the “REe-to-demand control strategy (Control strategy 

1)”. For instance, compared to the flexible delayed energy, Edelayed,e
+

, at 29.5 kWh/(m2a) for the case 

with the implementation of the Control strategy 2, the flexible delayed energy, Edelayed,e
+

, is 30.3 

kWh/(m2a) for the case with the implementation of the Control strategy 1. The inflexible energy 

(E+
inflexible,e) includes both the electricity imported from the electric grid, Eimp,e, and the delayed 

electricity from the battery during the REe surplus period, E
delayed,battery

−
. The inflexible energy (E+

inflexible,e) 

is 60 kWh/(m2a) for the case with the implementation of the  Control strategy 1, which is around 9 % 

less than the Einflexible,e
+

 for the case with the implementation of the Control strategy 2. 

From the perspective of the flexibility factors, the Control strategy 1 is also found to be superior to 

Control strategy 2. For instance, compared to the Control strategy 2, for the case with the 

implementation of the Control strategy 1, the capability of an energy flexible building can be 

enhanced in terms of shifting the forced electricity from the renewable shortage period to the 

renewable surplus period and shifting the delayed electricity from the renewable surplus period to 

the renewable shortage period. Furthermore, the Control strategy 1 shows a higher on-site flexible 

electric load fraction, OFLe, of 54.9%, than the Control strategy 2 of 46.8%. This indicates that the 
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proportion of the basic electric load covered by the flexible electricity is much higher by adopting the 

Control strategy 1 than the Control strategy 2.  

 
 

Figure 8.5  Energy flow of the “REe-to-demand control strategy” (Control strategy 1). (Note: τ is the simulation 

time step, 0.125 h; Psurplus1/2/3/4/5 and Pshortage1/2 are the updated surplus renewable electricity and 

the updated basic electric load). 
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Figure 8.6  Energy flow chart for the “battery-to-demand strategy” (Control strategy 2). (Note: τ is the 

simulation time step, 0.125 h; PREe is the updated surplus renewable electricity after covering the 
basic electric load. Psurplus1/2/3/4/5 and Pshortage1/2 are the updated surplus renewable electricity when 
the battery can cover the basic electric load and the updated electric load. P’surplus1/2/3/4/5 is the 
updated surplus renewable electricity when the battery can’t cover the basic electric load. The 
red dash line represents the impact of the excess renewable-recharging strategy on the basic 
electric load). 
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Table 8.3  Summary of the flexibility indicators (KPIs) from (Zhou and Cao. 2019a; Zhou and Cao. 2019b). 

KPI Equations Remarks 

Flexible time duration 

  t
surp

 =∫ GT[(GREe(t) − L
e
(t)), 0] ×

tend 

0
dt      

t
short
=∫ GT[(L

e
(t) −G

REe
(t)), 0] × dt

tend 

0

 
renewable energy, load 

Flexible power 

ρ
forced,AC

=Max[(C
chiller,normal,AC

− Lcooling,AC),0] 

+Cchiller,recharging,AC 

ρ
delayed,AC

= Max[(Lcooling,AC−Cchiller,normal,AC),0] 

ρ
forced,DHW

= Max[(Haux,DHW + HSTC − LDHW),0] 

+HREe-DHW 

ρ
delayed,DHW

 = Max[(LDHW − Haux,DHW  −  HSTC),0] 

ρ
forced,battery = Pcharging,battery 

ρ
delayed,battery

= Pdischarging,battery 
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dt
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Figure 8.7  The impact of energy control strategies on the (a) Flexible energy; (b) Energy flexibility indicators. 

(The system is supported by a 30-kW wind turbine.) 
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8.4.1 Excess renewable-recharging strategy for hybrid thermal storages 

In terms of managing the on-site renewable energy, several case studies are defined as listed in 

Table 8.4. Case 1 is designed as the reference case for the comparative analysis. The impact of 

different combinations of thermal storage systems, as shown in the red dash line in Figure 8.3, on 

the Energy Flexibility of the hybrid energy system is investigated from Case 2 to Case 4 as listed in 

Table 8.3. For instance, in Case 3, the surplus renewable electricity is used to firstly recharge the 

ACST before recharging the DHW tank (DHWT). Furthermore, the Case 5 is designed to 

comparatively investigate the difference resulting from different recharging sequences of the hybrid 

thermal storage systems. In addition, the surplus REe-to-battery control strategy, Case 6, is 

designed to investigate the impact of the battery integration on the Energy Flexibility of the hybrid 

energy systems. 

Table 8.4  Simulation cases for the hybrid thermal energy storages management. 

Simulation groups Control strategies 

Case 1 Surplus REe-to-thermal recharging control strategy: No excess renewable-recharging strategy 

Case 2 
Surplus REe-to-thermal recharging control strategy: the excess REe-ACST recharging 

strategy 

Case 3 
Surplus REe-to-thermal recharging control strategy: the excess REe-ACST, and the excess 

REe-DHWT recharging strategies 

Case 4 
Surplus REe-to-thermal recharging control strategy: the excess REe-ACST, the excess REe-

DHWT and then the excess REe-SCST recharging strategies 

Case 5 
Surplus REe-to-thermal recharging control strategy: the excess REe-DHWT, the excess REe-

ACST, and then the excess REe-SCST recharging strategies 

Case 6 
Surplus REe-to-battery control strategy: the excess REe-DHWT, the excess REe-ACST, and 

then the excess REe-SCST recharging strategies 

Several cases (as listed in Table 8.3) have been investigated with respect to different excess 

renewable-recharging strategies. As shown in Figure 8.8(a), several conclusions can be drawn. 

 Compared to the Case 1, by implementing the excess REe-ACST recharging strategy (Case 

2), the grid importation (Eimp,a) decreases from 72.4 to 70.2 kWh/m2a by 3%, and the grid 

exportation (Eexp,a) decreases from 24.4 to 20.3 kWh/m2a by 16.8%. Furthermore, the annual 

net equivalent CO2 emission increases from 33.6 to 34.9 kg/m2a by 1.3 kg/m2a. Compared 

to the Case 2, by implementing the excess REe-DHWT recharging strategy (Case 3), the grid 

importation (Eimp,a) decreases from 70.2 to 64.7 kWh/m2a by 7.8%, and the grid exportation 

(Eexp,a) decreases from 20.3 to 12.1 kWh/m2a by 40.4%, respectively. Furthermore, the 

annual net equivalent CO2 emission is increased from 34.9 to 36.8 kg/m2a by 1.9 kg/m2a.  

 

 By changing the charging strategy from the surplus REe-to-thermal recharging control 

strategy (Case 5) to the surplus REe-to-battery control strategy (Case 6), the annual net 

equivalent CO2 emission is decreased by 3.6 kg/m2a (from 36.4 to 32.8 kg/m2a). 
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Figure 8.8  The effect of the excess renewable-recharging strategies on: (a) the grid interaction and the 

annual net equivalent CO2 emission; (b) the annual net operational cost and the annual matching 

capability. (Note: the Eimp,a, Eexp,a and CO2eq,a refer to the annual grid importation, the annual grid 

exportation and the annual equivalent CO2 emission. The OEFe and OEMe refers to the on-site 

electricity fraction and the on-site electricity matching. The system is supported by a 15-kW wind 

turbine.) 

Figure 8.8(b) shows the evolution of the annual net operational cost and the annual matching 

capability when implementing different excess renewable-recharging strategies. Several conclusions 

can be drawn as shown below. 

 Compared to the Case 1, by implementing the excess renewable-recharging strategies in the 

Case 5, the annual OEMe increases from 0.78 to 0.93, whereas the annual OEFe decreases 
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from 0.49 to 0.46. The reason is that, by adopting the excess renewable-recharging 

strategies, the grid exportation (Eexp,a)  decreases from 24.4 to 8.2 kWh/m2a, and the grid 

importation (Eimp,a) decreases from 72.4 to 60.3 kWh/m2a. Furthermore, the basic electric 

load decreases from 152 to 128 kWh/ m2a and the annual net operational cost decreases 

from -261.9 to -271.6 HK$/ m2a by 3.7%. 

 

 There is a little difference when changing the charging strategy from the surplus REe-to-

thermal recharging control strategy (Case 5) to the surplus REe-to-battery control strategy 

(Case 6). For instance, the annual net operational cost decreases from -271.7 to -276.9 HK$/ 

m2a, and the annual OEFe increases from 0.462 to 0.478. 

8.4.2 The structural thermal mass storage 

Figure 8.9 shows the impact of the structural thermal mass of the building façade on the Energy 

Flexibility. As shown in Figure 8.9, an increase of the temperature difference of indoor air set-point 

temperature (∆T) from 0 to 6 ºC (or the decrease of the indoor air setpoint temperature from 24 to 

18 ºC) will result in the increase of the E+
forced,e from 43.1 to 72.4 kWh/m2a by 68%. This indicates 

that, 68% more flexible energy can be obtained by the surplus renewable energy. Meanwhile, the 

E+
delayed,e increases from 31.5 to 43.1 kWh/m2a. The E−

forced,e also increases from 13 to 37.2 kWh/m2a 

by 24.2kWh/m2a. This indicates that, 24.2 kWh/m2a more inflexible energy can be resulted from the 

storage tank during the renewable shortage period. The reason is that by reducing the indoor set-

point temperature, more cooling energy in the thermal storage tank is consumed for covering the 

increased cooling load. Therefore, more forced energy is required for charging the storage tank at 

the renewable shortage period. Meanwhile, the E−
delayed,e does not monotonously increase with 

respect to the increase of the  ∆T. For instance, the E−
delayed,e increases  from 46.5 to 49.5 kWh/m2a 

by 6.5% when the  ∆T increases from 0 to 1 ºC, and it decreases from 49.5 to 43.5 kWh/m2a by 

12.1% when the  ∆T increases from 1 to 6 ºC. The underlying reason is that, when the ∆T increases 

from 0 to 1 ºC, the designed excess renewable-recharging chiller can cover the cooling load, and 

the energy consumption of the normal chiller is not affected. The increase of the delayed energy at 

the renewable surplus period is due to the increase of the cooling load. However, with respect to the 

further increase of the ∆T from 1 to 6 ºC, the normal chiller is required to reduce the indoor 

temperature as the increase of the cooling load cannot be covered by the excess renewable-

recharging chiller only. As a result, the delayed energy at the renewable surplus period is decreased 

due to the operation of the normal chiller.  

Moreover, the proportion of the surplus renewable energy becoming the flexible energy, and the 

basic demand covered by the flexibility sources were also investigated in this part. With respect to 

the increase of the ∆T from 0 to 6 ºC, the OFRe increases from 0.38 to 0.82, indicating that more 

on-site surplus renewable energy can be the flexible energy by activating the thermal storage of the 

building façade. This is due to the increase of the E+
forced,e from 43.1 to 72 kWh/m2.a. Meanwhile, the 

OFLe decreases from 0.81 to 0.41 with respect to the increase of the ∆T from 0 to 6 ºC. The reason 

is due to the increase of the E−
forced,e from 13 to 37.5 kWh/m2.a. The FFdelayed,e increases from -0.19 

to 0 when the ∆T increases from 0 to 6 ºC. This indicates that, by enlarging the temperature 

difference deviating from the baseline set-point temperature, the capability of flexibility sources can 

be enhanced in terms of shifting the delayed energy from the renewable surplus period to the 

renewable shortage period. Table 8.5 lists the impact of different energy control strategies on the 

flexibility indicators. It can be noticed that, compared to the “battery-to-demand control strategy”, the 

“REe-to-demand control strategy” shows more Energy Flexibility potentials. Moreover, the utilization 
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of the structural thermal mass storage can enhance the OFRe and the FFdelayed,e, whereas the OFLe 

and the FFforced,e are decreased. 

  

Figure 8.9  The impact of the temperature difference of indoor air set-point temperature (∆T) on the flexible 

energy and the flexibility factors. 

Table 8.5  Summary of the impact of energy control strategies on selected flexibility indicators.  

Energy control strategies Flexibility indicators 

REe-to-demand control strategy Higher OFRe Higher OFLe Higher FFforced,e Higher FFdelayed,e  

Battery-to-demand control 
strategy 

Lower OFRe Lower OFLe Lower FFforced,e Lower FFdelayed,e 

Structural thermal mass storage Higher OFRe Lower OFLe Lower FFforced,e Higher FFdelayed,e 

8.4.3. Conclusions 

Based on the case study, the building Energy Flexibility of a building-vehicle energy system has 

been quantitatively investigated. The integrated building energy system includes the on-site 

renewable system, the hybrid energy storage systems, the battery storage, the electric vehicles’ 

system and the electric grid. Two different energy control strategies have been formulated and 

contrasted. Several conclusions can be drawn as follows: 

1) Compared to the “battery-to-demand control strategy”, by adopting the “REe-to-demand control 

strategy”, the proportion of the surplus renewable electricity which is the flexible forced electricity 

and the proportion of the basic electric load covered by the flexible electricity, can be increased. In 

addition, the capability of the energy flexible building can be enhanced in terms of shifting the forced 

electricity from the renewable shortage period to the renewable surplus period and shifting the 

delayed electricity from the renewable surplus period to the renewable shortage period; 

2) By adopting the excess renewable-recharging strategies, the annual on-site electricity matching 

(OEMe) increases from 0.78 to 0.93. Furthermore, with the implementation of the hybrid excess 
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renewable-recharging strategies as shown in Case 5, the annual net operational cost decreases 

from -262 to -271.7 HK$/m2.a by 3.7%; 

3) By activating the thermal storage of the building façade, more on-site surplus renewable energy 

can be the flexible energy. Moreover, by enlarging the temperature difference deviating from the 

baseline of the set-point temperature, the capability of flexibility sources can be enhanced in terms 

of shifting the delayed energy from the renewable surplus period to the renewable shortage period. 

However, only the rule-based control strategy is implemented in this study and the impact of the time 

resolution on the building Energy Flexibility has not been discussed yet. Our future research works 

will be focused on the development of instantaneous Energy Flexibility indicators together with the 

model predictive control strategy, and the impact of the time resolution on the building Energy 

Flexibility. 
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9 Rule-based load shifting with heat 
pumps for single family houses 

 Young Jae Yu, Fraunhofer IEE, Germany 

 
The study aims at increasing the load shifting potential of decentralized heat pumps by introducing 

a rule-based control (RBC) coupled with different thermal energy storages in a single-family house. 

The local residual load (energy demand not covered by renewable energy sources (RES)) is used 

as an external signal for the RBC and a flexibility strategy based on set-point modulation depending 

on the local residual load is applied to the heat pump control. Besides the analysis of the RBC, the 

study presents the impact of load shifting with RBC regarding energetic and economic aspects in 

comparison to the conventional heat pump operation (heat-driven) with heat pump blocking times 

(3x2 hours a day). During these blocking times, the grid operators can block the operation of heat 

pumps in order to avoid peak loads. 

9.1 Building and system description 

For the simulation study, a single-family house is modelled with multiple thermal zones using 

TRNSYS type 56 (University of Wisconsin, 2011). The building model has two floors with a total floor 

area of 160 m² and consists of 11 thermal zones representing a typical single-family house in 

Germany. The roof space and cellar are considered as unheated building parts. The building model 

is presented in Figure 9.1.  

 

Figure 9.1 Perspective view and floor plan of the ground floor (left) and first floor (right) of the single famiy 

house. 

The building model has a heavy weight construction consisting of brick walls and concrete floors. 

The heat transfer coefficients of the constructions are shown in Table 9.1. For the building, the 

hygienic ventilation is ensured by a mechanical ventilation system with heat recovery. The heat 

recovery unit preheats the airflow before the supply air enters the rooms 1, 2, 9, 8, 11 and 12 (see 
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Figure 9.1). Exhaust air is taken from rooms 5, 3, 10 and 13. The supply air flow rate is 50 l/s to the 

whole building and the heat recovery factor amounts to 0.8. 

Table 9.1  Heat transfer coefficients of constructions (EnEV 2009, 2009). 

Construction 
U-value 

(W/(m² K)) 
Thermal insulation 

Specific heat capacity 
(W/K) 

External wall 0.28 
10 cm external 

insulation 
ca. 780 

Top floor ceiling 0.20 Ceiling insulation ca. 1,700 

Cellar ceiling 1.12 Ceiling insulation ca. 1,700 

Window 1.3 
Double thermal 

insulating glazing 
- 

The mechanical ventilation schedules and internal heat gains (occupants and household equipment) 

are based on occupancy schedules (see Figure 9.2). The daily occupancy schedules of individual 

room types are based on (Schnieders, 2008), (Hartmann, 2010), (Feist, 1994) and (DIN V 4108-6, 

2003). 

 

Figure 9.2  Daily occupancy schedule and internal heat gain (left: weekday, right: weekend)(Sources). 

The single-family house is equipped with a ground source heat pump (GSHP). Figure 9.3 shows the 

schematic diagram of the heating system with a GSHP. The design heat-load calculation of the 

building model is based on DIN EN 12831 (DIN EN 12831, 2004), which determines the required 

heating capacity of heat pumps.  
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Figure 9.3  Schematic diagram of the heating system with GSHP. 

In TRNSYS, the GSHP is modelled using manufacturer’s supplied performance data (VIESSMANN, 

2010) to ensure the accuracy of the results. Thereby, with the source and load side temperatures, 

the three-dimensional plots were interpolated for heating capacity and power draw. According to the 

data from the heat pump manufacturer, the rated heating capacity of the ground source heat pump 

is set to 6.2 kW,  rated power draw is set to 1.4 kW and has a COP of 4.5 in the specified test 

condition (source inlet temperature of 0°C and load outlet temperature of 35 °C). The sizing of the 

ground source and the other implemented ground parameters are defined by GSHP catalog data 

(VIESSMANN, 2010). For the sizing of the ground source, it is assumed that the ground has a 

specific abstraction capacity of 50 W/m (VIESSMANN, 2010). As a result, the length of the 

geothermal heat exchanger amounts to 98 m. Besides the GSHP, a 300 liter domestic hot water 

(DHW) tank is implemented in the building model. Furthermore, a 1000 liter hot water storage tank 

for space heating is included in the system, which is typically used in practice to ensure the minimum 

operating time of the heat pump and to bridge blocking times. For the calculation of DHW, a 4-person 

based scheduled tap pattern (Jordan, 2003) is applied to the DHW-storage tank (see Figure 9.4). In 

the simulation, different heat distribution systems in the building have been investigated (low 

temperature radiator system, underfloor heating, wall heating and concrete core heating) in order to 

examine the flexibility potential by using building mass as thermal energy storage.  

9.1.3 Local electricity supply system  

The flexibility potential of the decentralized heat pump operation is investigated based on local 

electricity data from the city of Wolfhagen in Germany (Stadtwerke Wolfhagen, 2013). The city is 

one of the pioneers in renewable energy that has achieved 100% renewable energy supply on an 

annual basis since 2014. Wolfhagen is a small town of approx. 14,000 (2018) residents in an area 

of 112 km² located in the Kassel District of the Federal State of Hessen. Wolfhagen´s 100% 

renewable strategy is essentially based on a newly installed wind farm with a rated capacity of 12 

MW and a PV farm with a rated capacity of 12 MW. Due to fluctuating electricity feed-in, the electricity 

demand cannot be covered at all times and thus the rate of self-consumption amounts to round 60 

percent.  Figure 9.5 shows the estimated renewable energy feed-in, electricity demand and residual 

load of the city of Wolfhagen.  

 

Kurnitski, REHVA, econcept Kurnitski, REHVA, econcept Kurnitski, REHVA, supplemented by econcept 
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Figure 9.4  Exemplary tapping profile of 4-person during 4 days. 

 

Figure 9.5 Monthly electricity feed-in, elecricty demand and residual load in Wolfhagen in 2013 (Stadtwerke 

Wolfhagen, 2013). 

A simple time-varying price signal is modelled based on the power demand and the electricity feed-

in from renewable energy sources in Wolfhagen. In Figure 9.6, the electricity price signal for 48 hours 

in January is presented as an example. It is assumed that the local consumer can use surplus 

electricity with low or negative market prices. The price signal is converted into a digital signal of 

codes (𝛾𝑒𝑙𝑒𝑐) “1 (High tariff during positive residual load)” and “0 (Low tariff during negative residual 

load)” for the heat pump control.  

𝛾𝑒𝑙𝑒𝑐 = 1 (ℎ𝑖𝑔ℎ 𝑡𝑎𝑟𝑖𝑓𝑓), 𝑖𝑓 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑓𝑒𝑒𝑑 − 𝑖𝑛 < 𝑑𝑒𝑚𝑎𝑛𝑑 (positive residual load) 

𝛾𝑒𝑙𝑒𝑐 = 0 (ℎ𝑖𝑔ℎ 𝑡𝑎𝑟𝑖𝑓𝑓), 𝑖𝑓 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑓𝑒𝑒𝑑 − 𝑖𝑛 > 𝑑𝑒𝑚𝑎𝑛𝑑, (negative residual load) 

Kurnitski, REHVA, econcept Kurnitski, REHVA, econcept 
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Figure 9.6  Electricity tarif depending on the residual load for 2 example days (Stadtwerke Wolfhagen, 2013). 

9.2 Methodology: control strategies 

The flexibility of buildings for space heating and domestic hot water (DHW) supply can be controlled 

in different manners. This study focuses on straightforward RBC, which aims at increasing the 

consumption of RE during peak periods with predefined rules. In general, RBC provides non-

mathematical concepts and conditions into a control solution. Typically, there is a programmable 

fuzzy logic controller (e.g. thermostat) with a predefined control scheme that is executed based on 

the external data (electricity price signal) (Keshtkar, 2015). Figure 9.7 shows the schematic diagram 

of the RBC. As shown in Figure 9.7, the RBC continuously receives the information about the 

electricity price from the outside of the building to make decisions in order to adjust to new set-point 

temperatures of the thermal energy storage (TES), based on the new information received from the 

grid operator. In this study, thermal mass within the building, the hot water storage for space heating 

and the domestic hot water supply are regarded as available TES for the flexible operation of the 

electric heat pump. 

Based on the information about the electricity price signal, a new set-point temperature for space 

heating and hot water supply is defined by switching the heat pump operation from heat-driven to 

grid-driven operation. The heat-driven heat pump control supplies the required thermal energy for 

space heating and domestic hot water with the defined set-point temperatures. In comparison, the 

grid-driven heat pump control manipulates the defined set-point temperatures depending on an 

external signal in order to charge/deplete the thermal energy storage while maintaining acceptable 

temperature levels for the occupants. The use of thermal mass in the building as TES during the 

grid-driven control is very limited due to the thermal comfort of occupants. In comparison, the set-

point temperature of external (outside of thermally conditioned zones) thermal energy storages, such 

as hot water storage for space heating and domestic hot water supply, can be modified depending 

on the price signal without affecting user comfort, since the control of the hydraulic circuit within the 

building is separated from the control unit of the heat pump supply temperature. In this case, it is 

important to maintain the supply temperature below approx. 60 °C (maximum supply temperature of 

small size heat pumps) (VIESSMANN, 2010). 
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Figure 9.7  Schematic diagram of the RBC. 

9.3 Implementation: control algorithms 

As explained in the former section, the heat pump is operated based on a RBC, which decides the 

operating mode of the heat pump. The RBC design methodology is illustrated in Figure 9.8. 

   

Figure 9.8  Architecture of RBC.  
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During heat pump operation, temperatures of different TESs, such as building mass and buffer 

storage for space heating and domestic hot water supply, can be modified by using a RBC depending 

on an external signal (electricity price). As shown in Figure 9.8, the control of the room air 

temperature and the supply temperature of the heat pump is controlled separately, since the heat 

pump system and the heat distribution system are usually hydraulically separated from each other 

by using a buffer storage. This separation especially allows for a flexible operation of the heat pump 

for load shifting by using the buffer storage, independent of the room air temperature control. Mostly, 

an on-off controlled heat pump is operated using a hysteresis of the supply temperature. The set-

point temperature is defined by a heating curve depending on outside temperature. Thereby, the 

hysteresis determines the length and number of operating cycles of the heat pump (Huchtemann, 

2015). Whereas a constant hysteresis (heat-driven control) leads to relatively short cycling with low 

heat loads (at low supply temperatures) and delivers exactly the required heat demand. In 

comparison, the grid-driven control in RBC increases the set-point temperature by shifting the 

heating curve up in order to extend operation cycles and overload the TES during low tariff periods. 

In this case the buffer storage can be used as TES without affecting user comfort due to the 

separated control of the room air temperature. Principally, it is possible to integrate the building mass 

(underfloor heating, wall heating and concrete core heating) as TES during the grid-driven control in 

order to increase the heat storage capacity, if the occupants accept a certain temperature fluctuation 

within the building. In comparison to buffer storage for space heating, DHW storages are usually 

integrated into the heat pump system by an additional loading circuit that is connected to the heat 

pump by using a three-way valve. For the utilization of DHW storage as TES for load shifting, the 

set-point temperature of the domestic hot water should be increased by using a RBC. Since the 

supply temperature of the heat pump during DHW supply varies between 50 – 55 °C, the temperature 

increase of the DHW storage during load shifting is quite limited.  

The explained modification of temperatures in the TESs with a RBC enables charging TES during 

low price periods and discharging the stored thermal energy during following high price periods. 

Figure 9.9 shows an example of the heat pump operation with a traditional heat-driven control 

compared with the RBC control during five winter days. In this example, an underfloor heating is 

utilized as heat distribution system in the building and the heat pump is coupled with a 1000 liter 

buffer storage for space heating and a 300 liter DHW storage. 

By using the RBC, the intention is to increase the supply temperature for the DHW storage by 5 

Kelvin and the supply temperature of the space heating by 20 Kelvin. Additionally, the room air set-

point temperature is increased by 2 Kelvin. The reduction of the room temperature is not considered 

here due to the thermal comfort. The comparison of COP profiles of both variations shows different 

operating characteristics of the heat pump. It is clearly seen that the operating cycle of the heat pump 

with the RBC during low tariff periods is significantly longer than the heat driven heat pump operation. 

However, the heat pump operation with the RBC decreases COP due to the higher supply 

temperature and long-term operating cycles. This leads to increased energy demand of the heat 

pump operation. In order to analyze if this kind of additional energy demand is acceptable from an 

energetic and economic point of view, the load shifting of the heat pump is evaluated further in the 

following section. 
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Figure 9.9  Comparison between a traditional heat-driven heat pump operation and a heat pump operation 

with external price signal based RBC for five winter days.   

9.4 Results and conclusion 

In order to gain better insight in the potential of load shifting with the heat pump, the theoretical 

potential for the RBC using different TES within the building is evaluated in regard to different aspects 

in this section. To do this, the heat pump operation using the RBC is compared with the conventional 

heat pump operation (heat-driven) using heat pump blocking times (3x2 hours a day: 11 am -1 pm 

and 6 pm - 8 pm). The investigated operating variations are described in Table 9.2.  

Figure  compares the electricity demand of the control strategies investigated. Generally, increased 

use of surplus electricity for space heating and DHW-supply can be achieved through load shifting 

with the RBC. Especially, the RBC using the buffer storage as TES (Variation 2) enables to shift the 

load from high tariff periods to low tariff periods for a total of 234 kWh/a, which corresponds to around 

10 % of the annual electricity demand of the heat pump. However, the heat pump operation has an 

additional electricity demand of 378 kWh/a (Increase of electricity demand around 10 %) due to the 

reduced coefficient of performance (COP) and heat losses of the TES. In comparison to Variation 2, 

the additional utilization of the DHW storage during load shifting (Variation 3) has a marginal 

influence on the electricity demand, since the DHW storage is already operating at a high 

temperature level and has limited storage volume. In comparison, the utilization of the thermal 

building mass (Variation 4) increases the potential of load shifting significantly. The electricity 
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demand of around 570 kWh/a, corresponding to around 30 % of the annual electricity demand, can 

be shifted over a year by using RBC. However, the heat pump operation in Variation 4 increases the 

additional electricity demand of the heat pump as well. The expected additional electricity demand 

amounts to 591 kWh/a (Increase of electricity demand around 28 %). 

Table 9.2  Variation of the control strategies. 

Variation Heat pump control Thermal energy storage for load shifting 

Variation 1 
(Reference case) 

Heat-driven control with blocking 
times (conventional) 

1000 liter buffer storage for space heating as TES 

Variation 2 RBC (heat-driven + grid-driven) 1000 liter buffer storage for space heating as TES 

Variation 3 RBC (heat-driven + grid-driven) 
1000 liter buffer storage for space heating and 300 liter 

DHW storage as TES 

Variation 4 RBC (heat-driven + grid-driven) 
1000 liter buffer storage for space heating, 300 liter DHW 

storage and thermal mass with buildings as TES 

 

Figure 9.10  Electricity demand of the heat pump.  

Figure 9.11 depicts the annual COP distributions of the heat pump with the four control strategies, 

which are described in Table 9.2. It is clearly seen that the increased supply temperature of the heat 

pump during the load shifting reduces the COP and consequently the seasonal performance factor 

(SPF) of the heat pump, which represents the efficiency of the heat pump operation. 
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Figure 9.11  The annual COP distribution and SPF. 

In comparison to SPF, this study evaluates the primary energy ratio (PER) since the extension of 

system boundaries from the final energy input (heat pump) to the primary energy input can describe 

further performance figures related to efficient primary energy usage or renewable energy usage. 

PER is defined as the ratio of the useful energy output (thermal energy for space heating and DHW 

supply) to the primary energy input. Primary energy input can be defined either as total energy 

(renewable and non-renewable) or non-renewable, only. For this study PER is calculated as: 

𝑃𝐸𝑅 =
∫(�̇�𝐻𝑒𝑎𝑡 + �̇�𝐷𝐻𝑊) ∙ 𝑑𝑡

∫𝐸𝑝 ∙ 𝑑𝑡
 

�̇�𝐻𝑒𝑎𝑡 : Heat demand for space heating 

�̇�𝐷𝐻𝑊 : Heat demand for DHW-supply 

𝐸𝑝: Primary energy demand (electricity from non-renewable sources)  

For the calculation of PER, it is theoretically assumed that local surplus electricity production from 

wind and PV farms is regarded as renewable energy and has a primary energy factor of 0. Non-

renewable electricity has a primary energy factor (PEF) of 2.6 (EnEV 2009, 2009). Figure 9.12 shows 

the primary energy demand and PER of the heat pump with the different operation strategies. In 

comparison to SPF, the primary energy demand of the heat pump decreases by using a RBC and 

the corresponding PER increases by using TES. For example, the primary energy demand 

(electricity) can be reduced by around 1500 kWh/a and PER increases from 2.7 to 5.4 by a maximum 

integration of available TES (Variation 4).  
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Figure 9.12  Primary energy demand and PER of the heat pump. 

In addition to the energetic aspects, the economic aspects of load shifting with RBC are analyzed 

with different electricity tariff scenarios based on (Weiß, 2013), (Büchner et al., 2017) and 

(Fraunhofer IWES et al., 2014). The tariff scenarios are based on low and high tariff systems 

regarding the local residual load (see Figure 9.13). In tariff scenario 1 and 2, the low tariff varies 

depending on different assumptions for example relief of German Renewable Energies act-

surcharge, taxes and network charges for surplus electricity in Germany (Büchner et al., 2017), 

(Fraunhofer IWES et al., 2014). Additionally, Tariff Scenario 3 considers a case in which energy 

suppliers provide customers surplus electricity for free, in order to avoid urgent grid congestions. 

Table 9.3 summarizes the electricity tariff scenarios with specific assumptions.  

Table 9.3  Electricity tariff scenarios for the heat pump operation. 

Variation High tariff Low tariff Assumption 

Reference 
(conventional tariff 

for heat pumps)  

26.07 
Eurocent/kwh 

21.02 
Eurocent/kwh 

- 

Tariff Scenario 1 
26.07 

Eurocent/kwh 
14.07 

Eurocent/kwh 
Relief of EEG-surcharge and taxes for surplus 

electricity 

Tariff Scenario 2 
26.07 

Eurocent/kwh 
7.12 

Eurocent/kwh 
Relief of EEG-surcharge, taxes and network charge  

for surplus electricity 

Tariff Scenario 3 
26,07 

Eurocent/kwh 
0 

 Eurocent/kwh 
Surplus electricity is available for free 

The results of this study show that the load shifting with RBC can reduce the operating costs and 

give significant economic values to electricity customers with heat pumps, if surplus electricity is 

available at lower prices. Figure 9.13Figure  shows the savings potential of the operating cost with 

different heat pump operation strategies in comparison to the heat-driven heat pump operation 

(Variation 1). Generally, load shifting with the current tariffs increases the operating costs for the 

heat pump operation. This is due to the fact that the additional electricity demand during load shifting 
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cannot be compensated with the current electricity price system. This effect can be seen more clearly 

in Variation 4 by using building mass as TES, since the building has higher heat losses through 

building envelope compared to hot water storage tanks. From the price difference between high and 

low tariffs of around 0.12 €/kWh (Tariff Scenario 1), the load shifting with RBC starts to reduce the 

operating costs. In Tariff Scenario 1, the saving of operating costs is less than 60 €/a. By reducing 

the electricity price during surplus electricity production, the saving potential of the heat pump 

operating costs increases significantly. In Tariff Scenario 2, the saving potential of the operating cost 

ranges between 130 and 170 €/a depending on the use of TES. The utilization of the building mass 

as TES only has a significant influence on the operating cost saving, if the surplus electricity is 

delivered with a very low price or for free, as shown in Tariff Scenario 3. In Tariff Scenario 3, the 

operating costs of the heat pump can be reduced by up to around 310 €/a, which corresponds to 

60 % of the operating costs in the reference tariff.  

 

Figure 9.13  Operating cost savings potentials. 

In this study, a straightforward RBC is implemented into a heat pump system of a single-family house 

by using electricity data of a small city in Germany. Thereby, the RBC uses different TES in the 

building such as, building mass, buffer storage for the space heating and DHW-storage. The 

operation of the heat pump with a RBC is evaluated regarding energetic and economic aspects. 

From an energetic point of view, the load shifting of the heat pump with RBC provides disadvantages 

such as additional electricity demand and reduced COP and SPF of the heat pump, if the energy 

balance boundary is limited to final energy use. The expansion of the system boundary from final 

energy to primary energy can enable evaluation of the surplus electricity utilization for load shifting 

on the overall power network, regarding the energy chain from generation to consumption. For this 

reason, the heat pump operation should be evaluated for the future energy systems, with a high 

share of renewable energy sources, using PER besides SPF. From a societal economic point of 

view, the heat pump operation with RBC for load shifting provides a savings potential of the operating 

costs if the price difference between low and high tariffs is higher than 0.12 €/kWh. The utilization of 

the building mass can enable economic benefits, if the surplus electricity price is very low or delivered 

for free, in order to avoid urgent grid congestions.  
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10 Predictive rule-based control to 
perform heating demand response in 
Norwegian residential buildings  

 John Clauß, Norwegian University of Science and Technology (NTNU), Norway 

 
Four demand response strategies for heating a Norwegian single-family house are investigated in 

this study. The study is performed for two building insulation levels. Two demand response strategies 

are based on the electricity spot price, whereas the two other strategies use the average CO2eq. 

intensity of the electricity mix as a control signal. The demand response measures are implemented 

into predictive rule-based controls that vary the temperature setpoints for space heating and 

domestic hot water heating depending on the control signals. The predictive rule-based controls are 

implemented into the building performance simulation tool IDA ICE. Results show that, in Norway, 

price-based controls typically lead to increased annual emissions because operation is shifted 

towards nighttime, when Norway usually imports carbon-intensive electricity from the continental 

European power grid. Furthermore, it is challenging to achieve cost and emissions savings in the 

investigated Norwegian bidding zone because there are only limited daily fluctuations in the spot 

price and the CO2eq. intensity of the electricity mix. 

10.1 Building and system description 

The building used in this study is a single-family detached house. The building geometry is based 

on the ZEB LivingLab (Goia, Finocchiaro and Gustavsen, 2015) which is located in Trondheim.. The 

two building insulation levels investigated comply with the Norwegian building standards from 2010, 

TEK10, and with the Passive House Standard for residential buildings NS3700, PH. The building 

has a floor area of 105 m² (see the floor plan in Figure 10.1). A brief overview of the building 

properties is presented in Table 10.1. A model of the building is created in the building performance 

simulation tool IDA ICE Version 4.8 (EQUA, 2015). 

Electric radiators are used for space heating (SH). This is the most common SH system in Norwegian 

houses (Brattebø et al., 2014). There is one electric radiator in each room with a power equal to the 

nominal SH power of the room at the design outdoor temperature of -19 °C. Domestic hot water 

(DHW) is produced in a storage tank, which is equipped with an electric resistance heater with a 

capacity of 3 kW.  

The water storage tank is divided into four horizontal layers to account for stratification effects. The 

DHW storage volume is 214 liters and is calculated by: 

    V_DHW=S*65*npeople
0.7 [liters] (1) 

S is the safety margin and npeople the number of occupants. S is set to 125 % for a low number of 

people (Fischer et al., 2017). The charging of the DHW storage tank is controlled by two temperature 

sensors that are installed at the bottom and at the top of the tank. Regarding the operation principle, 

the electric resistance heater starts heating as soon as the temperature in the upper part of the tank 

drops below the setpoint and continues until the setpoint for the temperature sensor in the lower part 
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of the tank is reached. Daily profiles for DHW use and internal heat gains from electrical appliances, 

occupants and lighting are implemented according to the Norwegian technical standard, SN/TS 

3031:2016 (SN/TS3031:2016, 2016). Schedules for occupancy and lighting are taken from 

prEN16798-1 and ISO/FDIS 17772-1 standards (Ahmed et al., 2017; ISO17772-1, 2017). 

Table 10.1  Building envelope properties and energy system characteristics of the case study building 

(EW – external wall, IW – internal wall, HR – heat recovery, UTotal is the total U-value of the 

windows including the glazing and the frame, AHU – Air handling unit, ER – Electric radiator) 

(Clauß, Stinner, Sartori, et al., 2019). 

Building Building envelope Thermal 
bridges 

Infiltration Windows AHU HDS SH 
needs 

  UEW UIW URoof UFloor     UTotal ηHR ER   

  W/(m2K) W/(mK) ACH W/(m2K) %  W/m2 kWh/m2 

PH 0.10 0.34 0.09 0.09 0.03 0.60 0.80 85 40 34 

TEK10 0.16 0.34 0.18 0.18 0.03 2.5 1.2 70 78 91 

The Energy Flexibility potential of four different predictive rule-based controls (PRBC) is evaluated; 

two strategies are based on the electricity spot price and two scenarios are based on the average 

CO2eq. intensity of the grid electricity mix. The reference scenario, termed BAU (for business as 

usual), applies constant (reference) temperature setpoints ((R)TSP) for DHW (50 °C) and SH (21 

°C). The bathroom TSP is 24 °C. All doors are closed at all times. The demand response (DR) 

strategies are applied to the common rooms (meaning both Living Rooms). The study is performed 

for the year 2015. Weather data is retrieved from (OpenStreetMap, 2017) and hourly day-ahead spot 

prices for each bidding zone are taken from NordPool (Nord Pool Spot, 2016). The spot price is used 

as an input signal for the price-based control and to calculate the heating costs. An electricity fee for 

the use of the distribution grid is not considered in the cost evaluation. The hourly average CO2eq. 

intensity of the electricity mix is calculated based on the methodology introduced in (Clauß et al., 

2018). 

 

Figure 10.1  Floor plan of the studied building (Clauß, Stinner, Sartori, et al., 2019). 
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10.2 Methodology: control strategies 

The DR strategies are implemented into PRBCs. The TSPs for SH and DHW heating are varied 

depending on the penalty signal. The main objective of the controls is shifting loads away from peak 

hours. At the same time, the control strategies aim at reducing costs and/or carbon emissions. 

Thermal energy storages, here the building thermal mass and a water storage tank, are activated by 

changing the respective TSPs depending on the penalty signal. The TSPs for SH are either 

increased by 3 K (24 °C), or decreased by 1 K (20 °C). For DHW, the TSPs can be increased by 10 

K (60 °C) or decreased by 5 K (45 °C). 

The penalty signal for the CO2eq.-based controls is determined based on two principles. CSC-a, 

aims at operating the energy system in times of lowest CO2eq. intensities, whereas CSC-b rather 

charges the storages just before high-carbon periods in order to avoid the energy use during these 

critical periods. Both principles for the determination of the control signal are illustrated in Figure 

10.2. For Norway, principle CSC-a may, in practice, lead to extended periods with high TSPs 

because hourly CO2eq. intensities are typically low during daytime (Clauß et al., 2018). Thus, an 

unnecessary increase in annual energy use for heating may occur. Applying CSC-b, the TSPs are 

increased for shorter time periods compared to CSC-a, thus improving the energy efficiency. 

 

Figure 10.2  Principle of the determination of the carbon-based control signal according to (a) CSC-a and (b) 

CSC-b (HTSP is high temperature setpoints, RTSP is reference temperature set-points, LTSP is 

low temperature setpoints) (Clauß, Stinner, Solli, et al., 2019). 
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The penalty signal can be divided into three segments. The PRBCs use a 24-hour sliding horizon to 

determine a high- CO2eq. intensity threshold (HCT) and low- CO2eq. intensity threshold (LCT). The 

current CO2eq. intensity (CI) is compared to these thresholds at each hour. Taking CImax and CImin 

as the maximum and minimum intensities for the next 24h, LCT has been selected to CImin + 0.3 

(CImax-CImin) and HCT to CImin + 0.7 (CImax-CImin). For CSC-a, the TSPs are increased, if the 

CO2eq. intensity of the current hour is below the LCT and the setpoints are decreased to delay the 

start of the heating, if the CO2eq. intensity is above the HCT. If the CO2eq. intensity of the current 

hour is between the LCT and HCT, the TSPs remain equal to the reference scenario. For CSC-b, 

the control signal is also determined based on the three price segments, as defined for CSC-a, but, 

additionally, the control considers if the current CO2eq. intensity is increasing or decreasing with 

time. TSPs are increased, if the current CO2eq. intensity is between the LCT and HCT and the 

CO2eq. intensity is increasing in the next two hours (Clauß, Stinner, Solli, et al., 2019). 

Price-based control signals, hereafter called CSP-a and CSP-b, are also determined similar to CSC-

a and CSC-b, to also investigate DR measures based on the electricity spot price in the bidding zone 

(BZ). It is interesting to investigate CO2-based and price-based controls because the electricity spot 

price and the average CO2eq. intensity of the electricity mix are opposing. This is shown in Figure 

10.3. 

 

Figure 10.3  Spot price (Nord Pool Spot, 2016) and average CO2eq. intensity (Clauß et al., 2018) in bidding 

zone NO3 during an exemplary period in 2015. 

10.3 Implementation: control algorithms 

The control principles are implemented into predictive rule-based control strategies. Figure 10.4 

illustrates the principle of the CSC-b control strategy for the TEK10 building during 48h of the heating 

season in the Norwegian bidding zone NO3 as an example. Figure 10.4(a) presents the CO2eq. 

intensity as well as the low-carbon and high-carbon thresholds. Figure 10.4(b) shows the start and 

stop TSPs for the DHW hysteresis control as well as two temperatures in the DHW tank. The TSPs 

fluctuate based on the CO2eq. intensity signal. Also the TSPs for SH vary depending on the control 

signal, shown in Figure 10.4(c). It can be seen from Figure 10.4(d) that the operation of the electric 
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resistance heater for DHW heating depends on the CO2eq. intensity signal and the temperature 

hysteresis. 

 

Figure 10.4  llustration of the control principle for NO3 for TEK10 case CSC-b during a 48h period (LCT is 

Low-carbon threshold, HCT is High-carbon threshold, DHWstart and DHWstop are the start and 

stop temperatures for DHW, TMx are two temperatures in the water tank). 

10.4 Results and conclusion 

Table  summarizes energy use, costs and emissions for the investigated DR strategies for both 

building insulation levels. The relative difference for annual electricity use for heating compared to 

the reference case (BAU) is calculated by 

El. = (El._CS/El._BAU)*100-100 [%] (2) 

where CS is Control Strategy, El. is Electricity. The same equation can be used to determine the 

relative differences for the total annual carbon emissions and costs. 



 

109 

 

Table 10.2 shows that electricity use increases for all four control strategies. It can be seen that the 

CO2eq.-based and price-based control strategies lead to contradictory results: if the aim is to reduce 

emissions (CSC-a and CSC-b), costs are increased and if the aim is to reduce costs (CSP-a and 

CSP-b), emissions are increased significantly. This is due to the typical daily profile for the 

Norwegian spot prices and CO2eq. intensities, because CO2eq. intensities are low, when spot prices 

are high and vice versa (Clauß et al., 2018; Clauß, Stinner, Sartori, et al., 2019). Therefore, a trade-

off between the objectives has to be made to satisfy both aims. Similar trends for annual costs and 

emissions are visible for both building insulation levels.  

More specifically, regarding the CO2eq.-based control strategies, the CO2eq. emissions are 

increased slightly (3 % and 2 % for the two insulation levels), while costs are increased by up to 14 

% and 13 % for the PH and TEK10 respectively with the control strategy CSC-a. This results from 

increased temperature setpoints during grid peak hours because the CO2eq. intensity is usually 

lowest during these periods. For CSC-b, the temperature setpoints are increased just after grid peak 

hours, when the CO2eq. intensities are increasing. On an annual perspective this strategy leads to 

increased CO2 emissions, but to lower cost increases compared to CSC-a, also because the energy 

use increases less for CSC-b than for CSC-a. 

Regarding the price-based control strategies, both strategies lead to slightly increased costs (2 %) 

for both building insulation levels even though for CSP-a the energy use is increased by 10 % and 

12 % for TEK10 and PH respectively, whereas it is increased by only 5 % and 7 % for CSP-b. The 

energy use is higher for CSP-a compared to CSP-b because the temperature setpoints are increased 

for longer time periods (usually several hours during the night). CSP-b increases the temperature 

setpoints just before each peak period to make sure that the thermal storages are charged just before 

peak hours. This means that CSP-a makes use of the lowest spot prices, whereas CSP-b does not, 

hence costs increase by 2 % for both cases even though the energy use increases more for CSP-a 

than for CSP-b. Furthermore, it is shown that CSP-a increases total CO2eq. emissions by 19 % for 

the TEK10 building and by 26 % for the PH building. This is again due to the fact that CO2eq. 

intensities in NO3 are usually low when spot prices are high (see Figure 10.3). Compared to CSP-

a, total CO2eq. emissions are increased less for CSP-b because temperature setpoints are increased 

during periods with increasing spot prices. During the same periods, CO2eq. intensities are 

decreasing, thus leading to lower total CO2eq. emissions. 

Table 10.2  Energy use, annual costs and emissions relative to the reference case for the investigated 

cases. 

 BAU CSC-a CSC-b CSP-a CSP-b 

 EUse CO2 $ EUse CO2 $ EUse CO2 $ EUse CO2 $ EUse CO2 $ 

 kWh kg NOK % [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

PH 7543 86 1622 +12 +3 +14 +7 +8 +3 +12 +26 +2 +7 +11 +2 

TEK10 13512 159 2872 +11 +2 +13 +5 +4 +3 +10 +19 +2 +5 +8 +2 

It should be investigated whether savings could be increased with advanced controls such as model-

predictive control. Furthermore, the potential emission and cost savings would be stronger in 

locations with higher daily fluctuations of the spot price and average CO2eq. intensity. For bidding 

zone NO3, the potential savings are outweighed by the increased electricity use for heating, 

independent of the building insulation level. 
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11 CO2-aware heating of indoor 
swimming  

 Rune Grønborg Junker, Department of Applied Mathematics and Computer Science, 

Technical University of Denmark 

 
In this study, an economic model predictive control was used to control the heating of indoor 

swimming pools. The objective was to minimize the CO2 emission caused by the power plants 

producing the electricity used by the heat pumps of the swimming pools. The case study showed 

how flexibility can successfully be utilized by simply having varying penalty signals describing the 

cost of consumption in time.  

11.1 Building and system description 

This case study is based on indoor swimming pools located in Danish summer houses. The 

swimming pools are heated by air-to-water heat pumps, which are controlled to activate the Energy 

Flexibility associated with the thermal inertia of the water in the swimming pools. A total of 30 houses 

are controlled, 17 of them being located in Blåvand and 13 in Blokhus (both at the cost of the North 

sea). To simplify the setup and protect the hardware, the heat pumps are activated through 

temperature setpoints for the pool water. These are set higher than the current water temperature to 

turn the heat pumps on and vice versa to switch them off. The air temperature is not controlled in 

this project, but it is left as is, with standard thermostatically controlled heating. The summer houses 

are rented out on weekly basis, so the test period includes both periods without any residents using 

the pool and periods where it is used. When the summer houses are not rented out, the temperature 

of the pools is reduced to limit energy consumption. Since the heat loss of the swimming pools 

depends on the ambient temperature, the power consumption does as well. Thus, the varying 

weather conditions and occupancy of the summer houses impact the heating of the swimming pool, 

and thus also the available Energy Flexibility. The size and shape, and thus also the thermal 

properties, of the swimming pools is vastly different for each of the summer houses. Most of the 

swimming pools are equipped with heat pumps, however, again many different sizes and types are 

used. Furthermore, a few of the swimming pools are heated by electric boilers. The differences 

between swimming pools and heating equipment is not assumed to be known by the controller. Thus, 

individual models used for each of the summer houses are estimated adaptively by RLS (Madsen, 

2007). 

11.2 Methodology: control strategies 

Swimming pools are filled with large amounts of water, which implies large heat capacities. This 

means that a lot of energy can be stored in the water by a small increase of the temperature level. 

Conversely, heating of the swimming pools can be reduced without an immediate large drop in water 

temperature. For example, a swimming pool of 1.5 m depth and a surface area of 16 m² has a total 

of 24 tons of water, amounting to a heat capacity of 100,464 KW/K. If the temperature can be 

tolerated to change within ±1 K, then the swimming pools present approximately 200 MWh of 

Energy Flexibility. However, heat pumps are designed to be turned on and off infrequently, and thus 
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these systems are not ideal for ancillary services for voltage and frequency control, where up and 

down regulation changes frequently.  

The swimming pools are controlled through indirect control. This is made possible by equipping each 

swimming pool with an Economic Model Predictive Controller (E-MPC) as described in (Zemtsov, et 

al., 2017), that schedules the heating of the pool such as to keep the temperature within comfort 

boundaries as cheaply as possible. To utilize the Energy Flexibility, varying penalties can be sent to 

the E-MPC, according to which it will minimize the operational costs. For this pilot, first the CO2-

intensity was used as penalty signal, and later the prices from the Danish regulation market. Thus, 

it was first used to minimize CO2 emission, and later to improve grid balancing. 

11.3 Implementation: control algorithms 

E-MPC are used to control the temperature of the swimming pools according to penalty signals. The 

optimization problem solved by the controllers is given by: 

𝑚𝑖𝑛 ∑

𝑁

𝑘=0

𝜆𝑡+𝑘𝑢𝑡+𝑘 + 𝜆
𝛥|𝑢𝑡+𝑘 − 𝑢𝑡+𝑘−1| + 𝜆

𝑇𝑠𝑡+𝑘  

𝑠. 𝑡  ∀𝑘 ∈ {𝑘, 𝑘 + 1, . . . 𝑁} 

𝑢𝑡+𝑘 ∈ {0,1}, 𝑠𝑡+𝑘 ≥ 0, 

𝑇𝑡+𝑘+1 = 𝐴𝑇𝑡+𝑘 + 𝐵𝑢𝑡+𝑘  , 

𝑇𝑡+𝑘 ≥ 𝑇𝑚𝑖𝑛 − 𝑠𝑡+𝑘 , 

𝑇𝑡+𝑘 ≤ 𝑇𝑚𝑎𝑥 + 𝑠𝑡+𝑘 . 

where subscripts refer to time steps, 𝜆𝑡 is the forecast electricity price, 𝜆𝛥 is the cost of turning the 

heat pumps on and off, 𝜆𝑇is the penalty for each K the swimming pool is out of the comfort limits. 𝑢𝑡 
is the state of the heat pump, 1 for on and 0 for off. The temperature limits are given by 𝑇𝑚𝑖𝑛 and 

𝑇𝑚𝑎𝑥. 

The cost related to turning the heat pump on and off is due to fatigue on the heat pump, which should 

be limited. 𝐴 and 𝐵 are the system matrices describing how the temperature is expected to evolve 

over time, for given heating schedules. For the swimming pools it is found that using a first order 

autoregressive model is sufficient to describe the heat dynamics. This means that 𝐴 and 𝐵 are 

simply scalars. The case study deals with several summer houses, all with similar but different heat 

dynamics, due to their varying shapes, sizes and heating equipment. Thus, the numerical values of 

A and B are estimated individually for each summer house. Furthermore, to accommodate the 

changing weather conditions and their effect on the swimming pools, the parameter estimates are 

allowed to change in time. This is incorporated by using recursive least squares (RLS) (Madsen, 

2007), to re-estimate the model parameters at every time step. Also, the energy consumption is 

reduced when the summer houses are not booked, by lowering the temperature requirements in 

these periods. For the controller this is simply achieved by varying 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥. 

The controller is designed to be indifferent about the temperature as long as it is within the comfort 

interval. This is seen from the objective function that only consists of two terms related to the cost of 

running the heating, and a third term that penalizes the controller if it leaves the comfort interval. 
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This is in contrast to other approaches where the temperature is kept close to some value with 

deviations being accepted if the penalty signal warrants it. These are two different philosophies, 

where on the one hand temperature deviations are assumed to only impact the comfort significantly 

if they last for long enough, and on the other hand relatively large temperature deviations are 

considered unacceptable no matter how short, but small temperature deviations are considered 

acceptable, no matter how long. The approach taken here is in the category of the latter. 

Since the heat dynamics of swimming pools are very slow, the control horizon has to be long. In this 

project a control horizon of 24 hours is chosen, since longer horizons are computationally infeasible 

when operating in a 5 min. resolution. However, this horizon is too short to ensure that the swimming 

pools has enough time to get heated, when the temperature is to be increased prior to guests arriving 

in the summer houses. To combat this limitation without increasing the control horizon, the 

temperature limits are continuously increased 24 hours before the arrival of new guests, so that the 

controller sees the increased temperature limits 48 hours in advance, and thus has enough time to 

heat the pool. 

11.4 Results and conclusion 

The agile implementation of the setup, where setpoints are sent to control the pool, with the actuation 

being carried out by the default hardware, meant that sometimes the heating would not start or stop, 

even though the controller asked for it. This can be seen in Figure 11.1 that shows box plots of the 

power demand of summer house P32359, when the E-MPC did and did not call for heat. It is evident 

that usually the electricity consumption is much larger when the controller calls for heat, indicating 

that the control works. However, there are many instances where the E-MPC is calling for heat, but 

the power demand stays at almost zero, meaning that actually the heating is not on. Of course, the 

power demand of the remaining parts of the summer house is also included, which is not controlled, 

and thus this is seen as noise.  

Following the approach described in (Junker, et al., 2018) the Flexibility Function shown in Figure 

11.2 will be used to evaluate the flexibility of the swimming pools. This shows the expected change 

in power consumption if the penalty signal is a step increase of 1 𝐷𝐾𝐾/𝑘𝑊ℎ ≈ 1/7.5 𝐸𝑈𝑅/𝑘𝑊ℎ. It 

is evident how the very slow dynamics of the pool on the one hand enables it to move a lot of flexibility 

for a long time, we get 𝐴 = 21 𝑘𝑊ℎ and 𝛽 = 19 ℎ. On the other hand, the maximum effect is relatively 

low, corresponding to 𝛥 = −2 𝑊, which is small, and the change in demand takes effect slowly, with 

𝛼 = 12 ℎ. Lastly, there is only a small rebound effect, with 𝐵 = 3.5 𝑘𝑊ℎ. 

The objective with regard to the temperature of the pool is to keep it within comfort boundaries. This, 

combined with the fact that the controller is deterministic in the sense that it believes forecasts to be 

accurate, means that it will operate the temperature very close to the lower temperature boundary 

in order to reduce energy consumption. This means that it is usually not ready to reduce power 

consumption, in case of a non-anticipated increase in penalty, since this would result in the 

temperature dropping below the lower temperature limit. As a consequence, the controller is not 

good for providing flexibility, if the need for this is not anticipated hours in advance. The very nature 

of the regulation market means that up and down regulation is usually not anticipated, and so this is 

not an ideal way of designing controllers for this market. On the other hand, this kind of deterministic 

controller works well for foreseeable problems, such as peak demands in the morning and afternoon, 

since the increased cost associated with these can be forecasted with high accuracy. Thus, this 

flexibility should be bid into the wholesale market, rather than the regulation market. The slow 

response observed for the flexibility function in Figure 11.2 is a result of the MPC limiting the fatigue 
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on the heat pump, resulting in the response to penalty changes not being instantaneous. Similarly, 

the lack of a rebound effect can be linked to the fact that the MPC does not try to bring back the 

temperature to what it was prior to a large change in penalty.  

It is found that the Energy Flexibility varies in time, partly due to weather conditions, but even more 

so due to occupancy of the summer houses. Here, the summer houses are always in one of the 4 

states: 

1) Booked. 

2) Available. 

3) Transitioning from Available to Booked. 

4) Transitioning from Booked to Available. 

To save energy, the temperature of the pool is decreased when the summer house is available. 

However, the temperature can vary a bit no matter whether the summer house is booked or not, so 

there is Energy Flexibility available in both cases. On the other hand, when the summer house is 

approaching a time where it is Booked, the temperature of the swimming pool has to be increased, 

and during this time there is almost no flexibility available, since the heating has to be turned on 

almost constantly for two days. Similarly, when a period in which the summer house was booked 

comes to an end and is followed by a period of being available, the temperature of the swimming 

pool is much higher than what it is required to be, and thus almost no heating is required for several 

days. This severely limits the Energy Flexibility, since it is usually cheaper to simply leave the heating 

off. The length of the transitions depends on the swimming pools, but usually takes between two and 

four days. This means that if the summer house is Available for one week in between two periods of 

being booked, all or almost all of the Available week is made up of transitioning periods with little to 

no Energy Flexibility.  

An example of this is shown in Figure 11.3, that shows the temperature of one of the swimming pools 

during operation where it became Available, but the temperature only barely reached the Available 

steady state before the heating had to resume heating to meet the temperature requirements of 

being warm for a booked period. For this particular swimming pool, it took approximately 7 days of 

almost no heating to reach the lower temperature boundary. In fact, two events where the heating 

was switched on are seen, showing that some Energy Flexibility was still present. After the lower 

temperature is reached, the heat is turned on again, and it takes around 1.5 days to reheat the 

swimming pool, during which the heating is never turned off. 

The effectiveness of the control is estimated based on one of the summer houses, D7811 during the 

three first weeks of October 2017. This period is shown in Figure 11.4, where the top plot shows the 

temperature of the swimming pool in blue, and the heating (1 for on and 0 for off) in red. The bottom 

plot displays the CO2-intensity for the same period. Inspecting the figure reveals that indeed the pool 

is mostly heated during periods with low CO2-intensity. In fact, the average CO2-intensity during the 

periods where the pool is heated equaled 202 g CO2/kWh, while the overall average is 223 g 

CO2/kWh. Thus, assuming that the total amount of required energy is not influenced by the controller, 

it manages to reduce the CO2-emissions by 9.6 %. Considering the limited budget used for the 

installations, and the technical issues related to this, 9.6 % is considered a success.  
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Figure 11.2  Flexibility function estimated from Danish summer houses with indoor swimming pools controlled 

by E-MPCs. 

Figure 11.1  Demand when E-MPC is and is not calling for heating. 
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Figure 11.3 The temperature of a swimming pool during a period just after the summer house became 

Available and before it was Booked again. The blue circles show the only two events where 

flexibility is used to change the heating schedule. The temperature drops within the pink 

ellipsoids are sensor erros. 
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Figure 11.4  The effectiveness of the control during the three first weeks of October 2017 
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12 Economic model predictive control for 
demand flexibility of a residential 
building 

 Christian Finck, Eindhoven University of Technology, Netherlands 

 
In this study, an economic model predictive control (EMPC) is validated and tested to optimize 

demand flexibility (Finck, et al., 2019). The operational costs of energy usage are associated with 

demand flexibility, which is represented by three flexibility indicators: flexibility factor, supply cover 

factor, and load cover factor. The results from a day-long test show that these flexibility indicators 

are maximized when the EMPC controller’s demand flexibility is compared to that of a conventional 

proportional-integral (PI) controller. The EMPC framework for demand flexibility can be used to 

regulate use of on-site energy harvest, grid draw and grid feed-in and can thus serve as a basis for 

overall optimization of the operation of heating systems to achieve greater demand flexibility. 

12.1 Building and system description 

A Dutch residential building is used as a testbed to conduct the experimental case study. During the 

test period, two persons lived in the dwelling. The dwelling is located in the city of Utrecht, the 

Netherlands, representing a typical old row house from 1910. The dwelling has an overall floor area 

of 75 m² spread across three floors (kitchen on first floor, living room on second, and bedroom on 

third). During cold periods, when heating is required, the room temperature is controlled by one 

thermostat located on the second floor. The annual heating energy usage is about 0.47 GJ/m², which 

was delivered by a gas-fired condensing boiler. A detailed description of the building and the heating 

system can be found in (Finck, et al., 2019). 

12.2 Methodology: control strategy 

For the modelling of the heating system and the building, artificial neural network (ANN) models are 

identified from measurements. The ANN models are validated and implemented in the MPC 

framework. The validation of the ANN-MPC is conducted based on heating consumption. The MPC 

is modified to EMPC, and photovoltaic (PV) panels are virtually installed on the building to simulate 

on-site electricity generation (Figure 12.1). Additionally, a heat pump (HP) is virtually installed to 

simulate energy conversion from electricity to heating power. The virtual models of the PV panels 

and the HP are implemented in the EMPC. Thus, the EMPC is simulated and tested with the energy 

system, including PV panels providing power that can be directly used by a heat pump (HP) or can 

be fed to the power grid (Finck, et al., 2019).  
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Figure 12.1  Methodological framework of the economic model predictive control (EMPC) controller (Finck, et 

al., 2019). 

12.3 Implementation: control algorithm 

The EMPC is implemented enabling real-time control with hourly time steps. A receding horizon of 

12 hours is used for the EMPC to regulate the room temperature setpoints. Real-time measurements 

serve as hourly starting points. The controller implements openings of windows, openings of curtains, 

and upper and lower comfort bounds, which are based on occupants’ preferences (Finck, et al., 

2019). 

Dynamic programming (DP) is used as optimization strategy and carried out in MATLAB. The DP 

algorithm handles the optimization with sufficiently short computational times of less than 30 min, 

because there is only one control variable, which is the average room temperature of the living room. 

During the computation of the optimization at each control time step, first the duration of computation 

is estimated, then the simulation is run to predict 12 hours ahead. 

To investigate the optimization of costs of energy usage associated with demand flexibility, the 

EMPC assumes (1) the costs of consuming electricity from the grid, (2) the costs of consuming 

electricity from on-site PV power generation, and (3) the costs of delivering electricity from on-site 

PV power generation to the grid. Thus, the EMPC incorporates the costs of export of electricity and 

the costs of electricity consumption in one objective function. 

𝑚𝑖𝑛 𝐽𝐸𝑀𝑃𝐶 = ∑(𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑔𝑟𝑖𝑑(𝑡) 𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃−𝑔𝑟𝑖𝑑(𝑡) ∆𝑡)

𝑁

𝑡=1

+ ∑(𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑃𝑉(𝑡) 𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃−𝑃𝑉(𝑡) ∆𝑡)

𝑁

𝑡=1

 

+ ∑(𝐶𝑒𝑙.𝑓𝑒𝑒𝑑 𝑖𝑛 𝑔𝑟𝑖𝑑(𝑡) 𝑄𝑒𝑙.𝑃𝑉 𝑔𝑟𝑖𝑑(𝑡) ∆𝑡)

𝑁

𝑡=1

;           𝑁 = 12 ℎ;   ∆𝑡 = 1 ℎ , 
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where 𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑔𝑟𝑖𝑑  is the price of electricity consumption from the grid, 𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑃𝑉  is the price of 

electricity consumption from on-site PV generation, and 𝐶𝑒𝑙.𝑓𝑒𝑒𝑑 𝑖𝑛 𝑔𝑟𝑖𝑑  is the price of electricity 

exported to the power grid (Finck, et al., 2019). 

Accordingly, the most common indicators representing demand flexibility – the flexibility factor, 

supply cover factor, and load cover factor (C, et al., 2018) (J, et al., 2017) – can be maximized while 

using an EMPC implementation that minimizes the total costs of energy usage. The flexibility factor 

𝐹𝐹, supply cover factor 𝛾𝑠𝑢𝑝𝑝𝑙𝑦, and load cover factor 𝛾𝑙𝑜𝑎𝑑 are defined as follows 

 

𝐹𝐹 =  
∫  𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔  𝑑𝑡
𝑡𝑙𝑜𝑤 𝑝𝑟𝑖𝑐𝑒 𝑒𝑛𝑑
𝑡𝑙𝑜𝑤 𝑝𝑟𝑖𝑐𝑒 𝑠𝑡𝑎𝑟𝑡

− ∫  𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔  𝑑𝑡
𝑡ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑐𝑒 𝑒𝑛𝑑
𝑡ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑐𝑒  𝑠𝑡𝑎𝑟𝑡

∫  𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔  𝑑𝑡
𝑡𝑙𝑜𝑤 𝑝𝑟𝑖𝑐𝑒 𝑒𝑛𝑑
𝑡𝑙𝑜𝑤 𝑝𝑟𝑖𝑐𝑒 𝑠𝑡𝑎𝑟𝑡

+ ∫  𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔  𝑑𝑡
𝑡ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑐𝑒 𝑒𝑛𝑑
𝑡ℎ𝑖𝑔ℎ 𝑝𝑟𝑖𝑐𝑒 𝑠𝑡𝑎𝑟𝑡

 ,  

with   −1 ≤ 𝐹𝐹 ≤ 1 , 

𝛾𝑠𝑢𝑝𝑝𝑙𝑦 = 
∑ 𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃−𝑃𝑉
𝑁
𝑡=1

∑ 𝑄𝑒𝑙.𝑔𝑒𝑛.𝑃𝑉
𝑁
𝑡=1

 ,    

with   0 ≤ 𝛾𝑠𝑢𝑝𝑝𝑙𝑦 ≤ 1 , 

𝛾𝑙𝑜𝑎𝑑 = 
∑ 𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃−𝑃𝑉
𝑁
𝑡=1

∑ 𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃
𝑁
𝑡=1

 , 

with   0 ≤ 𝛾𝑙𝑜𝑎𝑑 ≤ 1 .  

A reference case was simulated to evaluate the results of EMPC1 and EMPC2. A 24-h period was 

simulated using a traditional PI controller according to 
 

𝑇𝑟𝑜𝑜𝑚,𝑠𝑒𝑡,𝑟𝑒𝑓 = {
𝑇𝑟𝑜𝑜𝑚,𝑠𝑒𝑡,𝑟𝑒𝑓 = 18

𝑇𝑟𝑜𝑜𝑚,𝑠𝑒𝑡,𝑟𝑒𝑓 = 20
  
𝑖𝑓 𝑡 ∊ (0: 00, 8: 00) 

𝑖𝑓 𝑡 ∊ (8: 00, 24: 00)
} .  

12.4 Results and conclusion 

During the test day, hourly predictions of the ambient temperature are retrieved from local weather 

stations. Global and horizontal solar radiation is calculated based on the developed forecasting 

model. The EMPC results are illustrated below, and measured data are compared to predicted data 

(Finck, et al., 2019). 

The EMPC, designed to maximize the flexibility factor, the supply cover factor, and the load cover 

factor, is implemented and tested. Figure 12.2 shows the results of the weather forecasting and 

measurement data 
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Figure 12.2  EMPC; hourly ambient temperature a) measured, b) predicted, and c) difference; hourly global 

and horizontal solar radiation d) measured, e) predicted, and f) difference  (Finck, et al., 2019). 

A prediction performance is calculated for the ambient temperature of RMSE = 0.71, MAE = 0.58, 

MAPE = 0.06, R2 = 0.94, and G = 0.76 and for hourly solar radiation of RMSE = 42, MAE = 25, 

MAPE = 0.25, R2 = 0.95, and G = 0.76 (Finck, et al., 2019).  

In addition to electricity prices (𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑔𝑟𝑖𝑑(𝑡)) from Amsterdam Power Exchange market, the EMPC 

requires the determination of the price of electricity consumed from PV generation (𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑃𝑉) and 

the price of electricity exported to the power grid (𝐶𝑒𝑙.𝑓𝑒𝑒𝑑 𝑖𝑛 𝑔𝑟𝑖𝑑). For the test day, the electricity 

prices are assumed according to 

𝐶𝑒𝑙.𝑓𝑒𝑒𝑑 𝑖𝑛 𝑔𝑟𝑖𝑑(𝑡)  = −𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑔𝑟𝑖𝑑(𝑡)                                                                                                                          (2) 

and 

𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑃𝑉(𝑡) =  −5(𝐶𝑒𝑙.𝑐𝑜𝑛𝑠.𝑔𝑟𝑖𝑑(𝑡))                                                                                                                         (3)  

The results of the control decisions of the EMPC are shown in Figure 12.3. A prediction performance 

is calculated for the room temperature of RMSE = 0.27, MAE = 0.18, MAPE = 0.01, R2 = 0.93, and 

G = 0.73 and for heating demand of RMSE = 0.19, MAE = 0.10, MAPE = 0.28, R2 = 0.99, and G = 

0.89. During low-price periods (APX price), the HP provides heating to the building (5:00 – 6:00). 

Between 15:00 and 17:00 the optimal temperature setpoint is raised to 22 °C. During this time slot, 

the APX prices are relatively low and PV power generation is relatively high compared to the daily 

average. Using the EMPC results in an increases of the flexibility factor from -0.88 to 0.67, the supply 

cover factor from 0.04 to 0.13, and the load cover factor from 0.07 to 0.16, as shown in Table 12.1. 
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Figure 12.3. EMPC; Hourly Amsterdam Power Exchange (APX) electricity prices including a) high-price 

periods and b) low-price periods; c) hourly room temperature setpoints; room temperature d) 

measured, e) predicted, and f) difference; heating demand g) measured, h) predicted, and i) 

difference (Finck, et al., 2019). 

An experimental case study of an MPC implemented in a residential building is presented. An ANN-

MPC approach is used to represent the dynamical behavior of the heating system and the building. 

Another ANN model is developed for weather forecasting to obtain global, horizontal solar radiation. 

All ANN models and the ANN-MPC are validated and tested, showing good prediction performance. 

The application of ANN models can be recommended for future identification of the dynamics of 

buildings and heating systems and for weather forecasting. The application of ANN-MPC can be 

recommended as a generic approach for optimal control of energy usage in energy systems in 

residential buildings. As a next step, it is important to adapt this generic methodology to other 

residential buildings. Further experimental case studies are required that compare MPC 

implementations, including performance evaluation of conventional and flexibility indicators. 
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Table 12.1  Summary results for EMPC (Finck, et al., 2019). 

Results MPC predicted MPC measured Reference case 

𝐽 (Euro cent) 13.69 13.85 14.28 

𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 (kWh) 19.53 19.33 16.13 

𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃−𝑔𝑟𝑖𝑑 

(kWh) 
4.05 4.25 3.61 

𝑄𝑒𝑙.𝑐𝑜𝑛𝑠.𝐻𝑃−𝑃𝑉 

(kWh) 
0.81 0.82 0.28 

𝑄𝑒𝑙.𝑔𝑒𝑛.𝑃𝑉 (kWh) 7.15 6.56 6.56 

𝐶𝑂𝑃  (-) 4.02 3.76 4.15 

𝐹𝐹 (-) 0.68 0.67 -0.88 

𝛾𝑠𝑢𝑝𝑝𝑙𝑦 (-) 0.11 0.13 0.04 

𝛾𝑙𝑜𝑎𝑑 (-) 0.17 0.16 0.07 

An EMPC approach is introduced to optimize demand flexibility. For this approach, operational costs 

of energy usage are associated with demand flexibility, which is represented by the flexibility 

indicators: flexibility factor, supply cover factor, and load cover factor. The operational costs are (1) 

the costs of consuming electricity from the grid, (2) the costs of consuming electricity from on-site 

PV power generation, and (3) the costs of delivering electricity from on-site PV power generation to 

the grid. By taking into account the operational costs of energy usage, one objective function can be 

created, and demand flexibility can be optimized. As an example, assuming positive prices for 

electricity consumption from the grid, negative prices for electricity consumption from on-site PV 

generation, and negative prices for grid feed-in from on-site PV power generation result in an 

increase of the flexibility factor, the supply cover factor (self-consumption), and the load cover factor 

(self-generation). This generic approach offers the possibility to regulate on-site generation, grid 

consumption, and grid feed-in. The methodology can be adapted to flexibility indicators which are 

associated with the costs of energy usage. 
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13 Implementation of demand response 
strategies in a multi-purpose 
commercial building 

 Despoina Christantoni and Donal P. Finn, University College Dublin (UCD), Ireland 

 
Exploiting demand-side flexibility may increase the overall capacity of power systems to handle 

variable renewables and help reduce overall system costs. In such scenarios, Energy Flexibility by 

means of demand response can be utilised to provide the necessary flexibility to the grid. To date, 

there has been considerable work done on commercial building participation in price-based demand 

response schemes, but less has been done on the investigation of the capabilities of commercial 

buildings to provide demand response under different and non-predictable utility / aggregator 

requests. The main objective of the present study is to develop a demand response strategy 

selection scheme for commercial buildings, which employs the appropriate strategies as a response 

to varying utility / aggregator requests while maintaining occupant comfort. A building energy 

simulation model of a multi-purpose commercial building is developed to act as a virtual test bed 

environment to examine the potential of different demand response strategies. The building is 

modelled using EnergyPlus and validated at 15-minute intervals. The Energy Management System 

feature in EnergyPlus is used to emulate various demand response measures, targeting heating, 

ventilation and air conditioning equipment, which are evaluated based on their ability to shift or curtail 

building electrical power demand as well as their effect on occupant comfort. Results indicate that 

reductions of up to 15 % in electrical power demand when targeting centralised loads (i.e., chiller) 

are possible. 

13.1 Building and system description 

The Student Learning Leisure and Sports Facility (SLLS) building, located in University College 

Dublin (UCD) in Ireland, is selected as the testbed site for this research. It was constructed in 2012 

and is comprehensively monitored, with a variety of HVAC equipment and systems that are typically 

found in the commercial building sector. It contains multiple zones with different occupancy and 

usage patterns with associated HVAC equipment which can be utilised in the case of a demand 

response (DR) event. The SLLS building has 11,000 m² floor area and consists of three floors. It 

contains a gym, a 50 m x 25 m swimming pool with related ancillary areas, including a wellness suite 

and additional facilities such as a fitness centre with associated aerobics and dance studios, a 

debating chamber, a drama theatre, a multimedia centre, seminar rooms, a student media studio, 

health facilities, offices, shops and a cafe space. Additionally, it contains spaces dominated by 

different loads and occupancy patterns which facilitate the evaluation of different DR strategies for 

different loads and zones. For example, the swimming pool and fitness centre exhibit large 

occupancy fluctuations on an hour-to-hour basis, while the offices have almost constant occupancy 

during their operational hours.  

The SLLS building is equipped with data monitoring facilities, thereby, from the beginning of its 

operation, building energy management system (BEMS) data is archived at fifteen-minute intervals. 

Not only is total electricity and gas consumption monitored, but there also are sub-meters for 

individual HVAC components (such as boilers, combined heat and power (CHP) units, chiller). 
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Pressure, humidity, temperature and CO2 concentration levels are measured at different points of 

the HVAC systems. In 2014, the total electricity consumption was 2.7 GWh, of which 1.2 GWh was 

imported from the grid while the rest was provided by CHP units, which consumed 7.5 GWh of gas. 

In the same year, building electricity intensity was 244.5 kWh/m²/yr. For centers with a leisure pool, 

the typical electricity consumption is 258 kWh/m²/yr, whereas UCD Fitness Centre (a special high-

intensity gym zone within the building) consumes 194 kWh/m²/yr (BRECSU 1999). In order to 

investigate the capabilities of the different HVAC systems and zones to provide DR and assess its 

impact on occupant comfort, focus is placed on the development of a detailed physical model (white-

box). EnergyPlus, particularly, was selected as the modelling software since it is widely used, 

enables the development of DR routines which overwrite the scheduled operation in the case of a 

DR event and can easily be coupled with other software enabling the development of control 

schemes. Figure 13.1 depicts the ground floor plan and the defined thermal zones for the SLLS 

model. 

 

Figure 13.1  Ground floor plan (left) and the defined thermal zones (right). 

The completed building model, which consists of sixty-four zones, is shown in Figure 13.2. The 

building has a considerable area of windows, all framed and double glazed. The overall window to 

wall ratio is 37 %, while this percentage reaches 59 % for the south facing part of the building. 

External windows are present in all offices and common areas such as corridors and halls, allowing 

natural light to enter the building. The swimming pool zone has the most internal and external 

windows to utilize natural light. 
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Figure 13.2  EnergyPlus model of the Student Learning Leisure and Sports (SLLS building). 

In total, 138 different construction materials were defined, composing 88 different fabric 

constructions. The U-values for key building elements are given in Table 13.1.  

Table 13.1  Building element U-value. 

Building Element U-value (W/(m² K)) 

External Walls 
0.22 

Roof 
0.14 

External Glazing 
1.48 

Internal Glazing 
2.52 

The swimming pool operates daily from 06:00 to 23:00 and from 08:00 to 18:00 on weekends. Its 

occupancy schedule is created based on measured hourly data, with 70 occupants being the 

maximum allowed and hence recorded data value. Lighting and electric equipment peak power 

density values for the swimming pool area are 16 W/m² and 2 W/m², respectively. The lighting 

schedule is independent of the outdoor conditions and only depends on the number of occupants in 

the zone. Accordingly, the lighting level is kept at 20 % of its peak density level during unoccupied 

hours, acting as access lighting. During low occupancy periods, lighting level is kept at 60 % of its 

peak density reaching 100 % during full occupancy periods. Higher occupancy values exist in the 

early morning and evening hours. The schedules for the SLLS office zones is in operation from 07:00 

to 20:00 daily, are given in Figure 13.3. Lighting and electric equipment peak power density values 

for the Fitness Centre are 12 W/m² and 10 W/m², respectively. Based on building data, a value of 

13.28 m² per person is used to describe the maximum number of occupants in the office zones. In 

addition, a constant infiltration rate of 5 m³/(m²hr) at 50 Pa is set for all perimeter zones. This value 

is in accordance with the Irish regulations for acceptable limits of infiltration rates.  
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Figure 13.3  Occupancy, lighting and electric equipment weekday schedules for the offices zones. 

The building electrical and space conditioning requirements are provided by two CHP units (506 kW 

thermal and 400 kW electrical output), two gas boilers (nominal in total 1,146 kW) and an air-cooled 

water chiller (nominal 865 kW). Moreover, heat is also provided by the campus district heating 

installation (500 kW). The space conditioning delivery equipment consists of Air Handling Units 

(AHUs) with heat recovery, Fan Coil Units (FCUs), underfloor heating and baseboard heaters. All 

the delivery equipment is weather compensated utilizing an outdoor temperature sensor, indoor 

temperature sensors, heating flow temperature sensors and heating temperature sensors. Boilers, 

CHP units and district heat are connected, via individual pumps, to a primary heating circuit. Seven 

secondary heating circuits are provided with hot water by the primary. These circuits cover the needs 

of the low temperature hot water calorifiers, the pool water heat exchangers, the AHU heating coils, 

the FCU heating coils, the underfloor heating circuit and the radiators. All of these comprise the 

supply heating circuit. The air-cooled chiller with its individual pump constitutes the chilled primary 

circuit. This circuit provides chilled water to all AHUs and FCU cooling coils. The heating circuit is 

modelled with two water loops, a heating and a heat recovery loop. A key component of the heating 

circuit is a water tank, modelled as a water heater mixed tank of 10 m³ volume, that links the two 

loops. The heat recovery loop consists of the boilers, the CHP units and the district heat installation 

from the campus, which supply the water tank with hot water. The heating loop includes the AHU 

and FCU heating coils, the calorifiers and pool water, which are supplied with hot water from the 

tank.  

The boiler nominal capacity, efficiency, design water flow rate, and design water outlet temperature 

are 1146 kW, 0.93, 0.024 m³/s, and 85 °C, respectively. The maximum electric power (kW), thermal 

efficiency, and electrical efficiency of the CHP units are 800 kW, 0.47, and 0.373, respectively. 

Regarding the cooling operation, only one loop is utilized in EnergyPlus, where the chiller and its 

circulation pump constitute the supply side, and the AHU and the FCU cooling coils form the demand 

side. The air-cooled electric chiller has a nominal capacity of 865 kW, reference COP of 3.1, and a 

reference supply chilled water temperature of 6 °C. 

Baseboard heaters are installed in thirty-five zones within the building, either as the only (mainly in 

some office zones) or as a complementary heating system (in zones that are heated with an AHU or 

underfloor heating). The total floor surface area of all thirty-five zones is 3240 m2.  
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Underfloor heating is installed in all changing facilities within the building (for the pool and the Fitness 

Centre) and the main corridor on the ground floor of the building which also operates as an open 

space. The total floor surface area is 2753 m² and the total length of the hydronic piping is almost 

1740 m.  

Fan Coil Units (FCUs), with ceiling mounted supply and extract grilles, are installed in the ground 

floor administration and manager offices (reception), the first-floor newspaper office, the TV suite, 

the radio pod, the two meeting rooms and the fitness center. All FCUs in the building are equipped 

with fans, which are cycled on and off to meet the heating or cooling demand. Air loops along with 

zone equipment form the entire forced air heating and cooling system (air side). Constant Air Volume 

(CAV) units which operate continuously based on a time schedule or Variable Air Volume (VAV) 

units which vary the air flow rate to meet the demand. There are eight AHUs located in three plant 

rooms throughout the SLLS building. 

Weather data based on a Typical Meteorological Year (TMY) weather file for Dublin is used. This 

data contains typical weather / climate data that is based on historical Actual Meteorological Year 

(AMY) weather / climate data and was downloaded from the U.S. Department of Energy.   

13.2 Methodology: control strategies 

Following the development of the building energy simulation model, building load analysis is 

conducted to determine the building energy usage breakdown and seasonality of the different loads 

associated with the various HVAC systems. Following the load analysis, targeted DR strategies are 

designed. Chiller, fans and thermal mass of the building are considered in the formulation of the DR 

strategies. The Energy Management System (EMS) feature in EnergyPlus is used to develop control 

routines, which are capable of overwriting the scheduled operation of the HVAC systems in order to 

emulate DR strategies. Subsequently, DR signals are used to initiate the DR strategies, 

demonstrating different utility / aggregator requirements. 

In order to evaluate the capabilities of different HVAC systems to provide DR under different external 

and internal conditions, such as weather conditions and operational schedules, a number of DR 

signals are created. These signals contain three data points: the advance time, the time of activation 

for the DR action, and the duration of the DR action. The signals are utilized to investigate the 

capabilities and limitations of the various DR strategies to provide load reduction / shifting for different 

requests (activation time, event duration and season). The duration of a DR event is usually between 

30 minutes and 2 hours (Kiliccotte 2010). Events of between 30 minutes and 2 hours are evaluated, 

as well as extended duration events of 3, 4, 6 and 8 hours in order to evaluate the building for longer 

periods. Moreover, four different activation times are considered in order to examine the capability 

of the building to provide DR at different times of the day (morning, noon, afternoon and evening). 

Namely, DR is requested at 09:00, 12:00, 16:00 and 18:00, in both winter and summer. At these 

times, the building zones experience different operational schedules and occupancy conditions. The 

sequence of the basic steps followed in this research is presented as follows: 1. Model development: 

development of an EnergyPlus model to be used as a DR testbed, 2. Load analysis: conduct thermal 

load analysis to identify the important energy end-use categories, 3. Demand response strategy 

development: develop DR strategies targeting building HVAC systems, 4. Demand response 

strategy assessment: create a repository of DR strategies based on simulated results for a 

representative winter and summer weekday for different activation times and event durations, and 

5. Demand response strategy selection scheme: a DR selection scheme which identifies the "best" 

strategy from the DR repository which meets the utility/aggregator requirements. The selection 
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scheme is also updated to be executed with simulated data under real conditions in order to eliminate 

uncertainties derived from weather conditions or occupancy. Only steps 1 to 3 are described in the 

current summary. A schematic representation of the overall research methodology is given in Figure 

13.4. 

In order to investigate the different DR events based on event duration, event commencement time, 

event advance time, the parametric feature in EnergyPlus is utilized to automate and simplify this 

process. The evaluation of the DR strategies is based on their impact on electricity pattern 

modifications as well as on occupant comfort. The performance of each strategy is determined by 

comparing its outputs against the baseline case where no DR action is applied. The change in the 

building electrical power demand and the influence on occupant comfort are the two main variables 

that are considered. As the DR strategies under investigation target the HVAC systems, they only 

affect thermal comfort and air quality; thus, occupant comfort assessment records depend on these 

values. Thermal comfort is accessed using the 7-point predicted mean vote (PMV) index of the 

Fanger thermal comfort model (ASHRAE, 2017). In general, an acceptable PMV-index values lies 

between -1 (slightly cool) and +1 (slightly warm), since it is not possible to satisfy all individuals in a 

large group sharing a collective climate. Regarding air quality, the threshold value for the CO2 

concentration in a zone is 1000 parts per million (ppm). 

 

Figure 13.4  Overall methodology diagram. 

13.3 Implementation: control algorithms 

A wide range of DR strategies targeting building HVAC systems are developed and accessed, based 

on their modification of electricity consumption patterns and effect on occupant comfort. These DR 

strategies are as follows:  

1) Plant equipment (chiller) water temperature increase to target the chiller load; 

2) Delivery equipment (fans) on/off control strategy and decreasing the supply air flow rate of 

variable air volume (VAV) unit; 

3) Zone air temperature setpoint modification.  
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The DR strategy selections scheme is developed based on case-based reasoning (CBR) techniques 

which is implemented using MATLAB. The main objective of the selection scheme is to identify the 

optimal DR measures that should be implemented to meet the utility / aggregator requests with the 

lowest impact on occupant comfort. Moreover, the scheme is developed not only to be extensible to 

additional DR measures inclusion but also to be easily applicable to other buildings as well. The 

initial scheme, where the strategy selection is made based on historical simulated data, is updated 

and through the Building Controls Virtual Test Bed (BCVTB) feature coupled with the building energy 

simulation model to provide the DR strategy selection scheme with real-time data. The DR strategy 

selection scheme based on historical simulated data consists of four different parts: data retrieval, 

possible strategy combinations formulation, identification of accepted combinations and final 

selection. All these steps are applied on retrieved data from a synthetic database (DR repository). 

The purpose of this scheme is to identify an "ideal" DR strategy from a number of similar simulated 

results, field tests or outputs from recorded events. 

The first part of the selection scheme, data retrieval, is then replaced and real-time simulation results 

are created for each DR event. Namely, the DR strategies can be updated with current weather and 

occupancy conditions in order to eliminate uncertainties derived from the model. This updated 

scheme enables zones to be included or excluded from the DR measures, taking into account their 

operational schedules which may differ from the simulated ones.  

13.4 Results 

In this section the influence of different DR strategies on the plant equipment (chiller) is investigated. 

The increase in chilled water temperature can reduce chiller electrical power demand. Using this 

strategy, DR reduction, and energy savings can be achieved without significant impact on occupant 

comfort. As shown in Figure 13.5, the chilled water temperature (CWT) strategy in winter is capable 

of providing a maximum load reduction of 17.6 kW (4.5% of peak electrical demand of approximately 

400 kW) for the duration of the DR event. The total electricity reduction is 15.8, 32.8 and 66.9 kWh 

for the one, two- and four-hour events, respectively. As observed in Figure 13.5, rebound effects for 

the one- and two-hour duration events occur only when the CWT is set back to its schedule value of 

6 °C (two hours after the end of the DR events). On the other hand, for the four-hour duration event, 

two rebound spikes are recorded at 17:00 and 18:00 when the CWT setpoint is decreased to 8 °C 

and 6 °C, respectively. Rebound electricity consumption values of 19.5, 24.9 and 34.8 kWh are 

estimated for the one, two- and four-hour duration events, respectively. As shown, events of longer 

duration cause higher rebound electricity consumption. Nevertheless, when the strategy is applied 

for a four-hour period at midday in summer, it is only capable of a load reduction for a limited period 

of time (2.5 hours), as shown in Figure 13.6. For the summer period, the load reduction during the 

events is higher. The maximum recorded load reduction over the duration of the events is 52.4 kW 

(11% of peak electrical demand of approximately 450 kW) and the total energy reduction is 50.2, 

101.4 and 113.2 kWh for the one, two- and four-hour events, respectively. After the DR event, 

significant rebound peaks are recorded as well (maximum load increase of up to 82.4 kW), which 

increases with the duration of the event.  
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Figure 13.5  Difference in building electrical load demand for the CWT strategy for 20th January in 15-minute 

intervals (Christantoni et al., 2016). 

 

Figure 13.6  Difference in building electrical load demand for the CWT strategy for 10th July in 15-minute 

intervals.   

Figure 13.7 shows the chiller electrical power demand when no DR measure is applied and in the 

case of the four-hour duration event, alongside the temperature of the water leaving the chiller. The 

CWT setpoint is 6 °C until noon, when the DR event starts. At this time, the setpoint is set to 12 °C. 

As long as the CWT is below the new setpoint (12 °C), the chiller electrical power demand is equal 

to zero. When the CWT reaches the 12 °C setpoint at 13:45, the chiller electrical power demand is 

slightly higher in comparison with the reference case. Namely, the average electrical power demand 
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in the reference case between 14:30 and 16:00 is 48.6 kW, whereas in the four-hour event case this 

value is equal to 54.2 kW. Following the DR event, three spikes are recorded in conjunction with the 

decrease of the CWT setpoint. 

  

Figure 13.7  Chiller electrical power demand and CWT for the four-hour duration event and the reference case 

for 10th July at 15-minute intervals (Christantoni et al., 2016). 

Regarding the occupant comfort assessment in all the conditioned zones of the SLLS building, little 

difference is recorded between the reference case and the events for the zone mean air temperature 

and the PMV-index values (to within 0.1°C) in both winter and summer time. Additionally, delivery 

equipment (fan on/off control strategy) in the office zones are considered. A fitness center, with a 

high design fan capacity, is not a common feature in typical commercial buildings, except hotels. For 

this reason, the on / off control strategy is also implemented in another group of zones (two meeting 

rooms, three offices, one radio station studio and two retail units) that are more germane of 

commercial buildings and are conditioned exclusively by FCUs. A FCU is assigned to each zone, 

providing heating or cooling.  

The fan nominal electrical capacity for Meeting Room 1, Meeting Room 2, Reception Shop, 

Pharmacy, Newspaper Office, Library, and Radio Station Studio are 0.7, 0.5, 1, 1.1, 2.1, 0.2, 0.5, 

and 0.5 kW, respectively. Both space conditioning and ventilation for these zones are provided from 

the FCUs, where the total fan electrical capacity is 6.6 kW. The FCUs are divided into two groups 

and are in turn cycled on/off at 30-minute intervals, in order to reduce the impact on the zone air 

temperature and, therefore, occupant comfort, while implementing the DR strategy. The first group 

consists of the pharmacy, newspaper, library and radio station studio FCUs. The remaining FCUs, 

constitute the second group. Both groups are selected to have the same value of fan rated electric 

power. The difference in electrical power demand for each of the three events and the reference 

case for winter is given Figure 13.8. The maximum recorded load reduction is 3.99 kW, whereas the 

electricity reduction during the one, two- and four-hour duration events is 3.9, 7.6 and 14.9 kWh, 

respectively. 
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Figure 13.8  Difference in building electrical load demand for the office zones on / off fan control strategy for 

20th January in 15-minute intervals (Christantoni et al., 2016). 

In the SLLS building, some of the zones require, due to their usage and thermal characteristics, 

cooling at certain periods of the day, even during the winter. Figure 13.9, for example, shows the 

heating and cooling power demand for the day of the event in two zones, the pharmacy which is 

located on the ground floor and the meeting room on the second floor (Meeting 2). The pharmacy 

operates daily from 07:00 to 18:00 and the meeting room from 08:00 to 20:00. As observed, the 

meeting room requires heating at the beginning of its operation (08:00-10:15) and afterwards (11:00-

22:00) there is a cooling demand (Figure 13.9). On the contrary, FCUs serving the pharmacy zone 

are required to provide heating throughout its operation. Cooling loads occurring during the winter 

period are either met by cycling outdoor air into the zones or by using cooling coils. At the time of 

the event, the FCUs in the two meeting rooms, the reception and library zones are used to address 

the cooling loads. Consequently, an interruption to FCU operation results in an increase of the air 

temperature in these zones during the DR event. For the remaining zones, the FCUs are utilized to 

meet the heating loads. 

  
  

Figure 13.9  Heating and cooling demand for the pharmacy and meeting room zones for the 20th of January. 
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The minimum recorded values for the zone air temperature and PMV-index for these zones are given 

in Table 13.2. As shown in Table 13.2, the PMV-index values in all cases are within the acceptable 

limits of occupant comfort. However, in some of them, the values are close to the lower limits and in 

the case of longer duration events, these values may be exceeded. 

Table 13.2  Minimum recorded values for the mean air temperature, maximum values for CO2 

concentration levels and minimum PMV-index values for office FCUs on / off control strategy 

for the DR events for 20th January (Figure 13.8). 

 Air Temperature (oC) CO2 Concentration (ppm) PMV-index 

Zone S0D1 S0D2 S0D4 S0D1 S0D2 S0D4 S0D1 S0D2 S0D4 

Shop 20.8 20.8 20.8 532.6 575.4 649.6 -0.5 -0.5 -0.5 

Pharmacy 19.2 19.2 19.0 478.0 504.5 560.7 -0.8 -0.8 -0.9 

Newspaper Office 20.7 20.5 20.4 682.0 761.0 857.7 -0.5 -0.5 -0.5 

Radio 21.4 21.4 21.4 636.2 657.3 667.5 0.1 0.1 0.1 

 

The CO2 concentration levels increase in all cases, as the FCUs are used for ventilation purposes 

and an interruption to their operation results in limiting outdoor air provision.  

Figure 13.10 shows the variation in building electrical load demand for each of the three events in 

summer. The maximum electrical power demand reduction recorded in any one-time interval (15 

minutes) is 6.4 kW. The electricity consumption is decreased by 4.5, 8.8 and 16.9 kWh for the one, 

two- and four-hour duration events, respectively. It can also be observed that a significant rebound 

effect is only evident after the four-hour duration event. For the remaining events, a lower reduction 

in building electrical power demand is recorded. 

During the summer period, all the office zones in the SLLS building conditioned by FCUs require 

cooling. Table 13.3 gives the maximum recorded values for the zone mean air temperature, PMV-

index value and CO2 concentration levels for these zones. The highest mean air temperature is 

recorded for the pharmacy, which is located on the ground floor and has external windows on three 

of the four of its walls. As a result, it has the highest solar heat gains in comparison with the other 

zones, which contributes to the zone air high temperature. The variation in the zone maximum 

temperatures for the remainder of the zones is mainly due to the various internal heat gains. In 

contrast with the results obtained for winter, during the summer period, some of the zones (meeting 

1, pharmacy and library) exceeded the occupant comfort limits, mainly for the two- and four-hour 

duration events. In the same zones, the CO2 concentration levels exceed the threshold limit of 1000 

ppm as well. For the remainder of the zones, CO2 concentration levels increase with the duration of 

the events, however they are maintained below the limits. The predicted electricity reduction in 

summer (4.5, 8.8 and 16.9 kWh) is greater in comparison with the reduction during winter (3.9, 7.6, 

14.9 kWh), especially for the two- and four-hour duration events. That is due to the fact that in 

summer, when greater outdoor temperatures occur, cooling is provided to the zones using the 

cooling coils which are supplied with chilled water from the chiller. 



 

134 

 

 

Figure 13.10 Difference in building electrical load demand for the office zones on/off fan control strategy for 

10th July in 15-minute intervals (Christantoni et al., 2016). 

Table 13.3  Maximum recorded values for the mean air temperature, CO2 concentration levels and PMV-

index values for office FCUs on / off control strategy throughout the DR events for 10th July.  

 Air Temperature (oC) CO2 Concentration (ppm) PMV-index 

Zone S0D1 S0D2 S0D4 S0D1 S0D2 S0D4 S0D1 S0D2 S0D4 

Meeting 1 27.8 28.5 28.7 859.0 1100.6 1386.0 0.2 0.9 1.0 

Meeting 2 26.8 27.4 27.8 582.4 725.4 891.5 0.1 0.5 0.7 

Reception 25.5 25.9 26.4 910.2 1059.9 1241.3 -0.1 0.0 0.2 

Shop 26.2 26.4 26.7 538.3 583.9 667.9 0.1 0.2 0.3 

Pharmacy 27.2 28.8 30.9 480.8 508.7 570.3 0.9 1.4 2.1 

Newspaper Office 24.3 24.5 24.8 681.5 761.5 860 -0.4 -0.3 -0.2 

Library 27.6 28.3 29.0 1014.9 1217.6 1379.6 0.7 1.0 1.2 

Radio station studio 25.6 25.9 26.6 724.3 766.4 815.3 -0.4 0.3 0.5 
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Thus, a limitation in the cooling load demand leads to a lower electricity consumption from the chiller 

as well. In general, the strategy does not affect occupant comfort in the zones during the one-hour 

event (recorded PMV-index values are within the threshold limits for both winter and summer). 

However, for longer duration events, especially during the summer, some of the zones may exhibit 

occupant comfort limits (pharmacy and library). On the other hand, since FCU fans use on / off fans, 

which are cycled on or off in order to maintain the setpoint temperature in the zones, in some cases 

indoor air quality is more likely to be exceeded (Meeting 1, reception and library). Finally, a noticeable 

rebound effect is only evident after the four-hour event in summer, when a two-hour rebound period 

follows the DR event. The electricity consumption increase during that period is 3.3 kWh, notably 

lower than the 16.9 kWh reduction throughout the event (equivalent to a 5.1 DR ratio). In all other 

cases, as the zones are partially conditioned throughout the duration of the events, rebound effects 

are negligible. The maximum electrical power demand reduction recorded in one-time interval is 4.2 

and 6.1 kW for winter and summer, respectively. These values are low compared with the total 

building electrical power demand of almost 350 kW. However, this reduction is likely to be 

proportionally larger in other office only type buildings, where office zones conditioned by FCUs 

occupy a larger portion of the building. In the SLLS building, this group of zones occupies just 3 % 

(234 m²) of the total floor area.  

13.5 Conclusions 

An evaluation of the capabilities of different demand response strategies to maintain occupant indoor 

thermal comfort while simultaneously meeting utility/aggregator requirements regarding the 

immediacy and the duration of the load reduction is presented. The chilled water temperature (CWT) 

increase strategy proves to have the largest DR potential. Namely, it can provide up to 14.1 % load 

reduction in summer, when most of the analyzed zones require cooling, without any significant effect 

on occupant comfort. This decrease is lower during winter (4.5 %). However, simulation results 

reveal that when there is a considerable cooling demand in the building, the strategy is capable of 

providing a load reduction only for a limited duration. Specifically, for summer events commencing 

at noon and of a duration longer than 2.5 hours, the electrical power demand is increased in 

comparison with the base case. Delivery equipment on/off control constitutes also a significant DR 

load, but it requires careful planning to ensure occupant comfort in zones is maintained, especially 

where considerable heat gains occur. In addition, it is observed that longer duration demand 

response events are more likely to disrupt occupant comfort. Eventually, the results show that even 

for temperate climate conditions, as exhibited in Ireland, there is a considerable DR potential in the 

commercial building sector, which can be utilized to provide additional flexibility to electricity end-

use demand profiles, thereby improving the renewable energy system integration. 
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14 Experimental assessment of Energy 
Flexibility potential of a zone with 
radiant floor heating system   

 Ali Saberi Derakhtenjani, Jose Agustin Candanedo and Andreas Athienitis, Center for zero 

energy building studies (CZEBS), Concordia University, Montreal, Canada  

 
This study illustrates the potential to provide Energy Flexibility of a radiant floor embedded in a 

concrete slab. The study is carried out in an experimental room designed to simulate the conditions 

of an office space near a window. This room –denominated “perimeter zone test cell” (PZTC)– has 

a radiant floor heating system. The PZTC is located inside a controlled environment. The EC 

provides the desired exterior conditions. The temperature inside the PZTC is controlled with a 

thermostat that adjusts the heating power delivered from the pipes to the slab. Relatively small 

adjustments of the zone air temperature setpoint result in significant changes in the heating load, 

and thus provide a certain Energy Flexibility potential. This flexibility, along with applicable strategies 

in response to a specific price signal profile, are discussed below. 

14.1 Building and system description 

The case study is conducted in the perimeter zone test cell (PZTC) located at Concordia University’s 

solar simulator/environmental chamber (SSEC) laboratory. The temperature of the SSEC can be 

controlled within a wide range (between -40 °C and +50 °C) and, thus, allows for a great deal of 

flexibility in terms of testing conditions. Figure 14.1 shows the schematic of the SSEC, perimeter 

zone, radiant floor system and the mechanical room. 

 

 Figure 14.1  Schematic of SSEC with PZTC and radiant floor. 
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The PZTC is a 3 m×3 m×3 m office placed inside the environmental chamber and it has a radiant 

floor heating system. The side and back walls and ceiling consist of 4 in (10cm) insulation having 

the R-value of R32 (RSI 5,64). The front wall is a BIPV/T façade with an approximately R5 (RSI 0,88) 

thermal resistance. The floor is made of an 8 cm thick concrete with insulation at the bottom. The 

pipes of the radiant floor system are made of conventional cross-linked polyethylene (PEX), and a 

have an external diameter of 1.75 cm. The pipes are installed in a “foam matrix” of insulating material 

that also facilitates keeping them in place. The pipes have an approximate separation of 15 cm 

between them. A mechanical room provides controlled flow rate of fluid (propylene-glycol and water 

mixture) for the radiant floor. The floor is divided into two slabs as shown in Figure 14.2. The 

schematic in Figure 14.3 shows the total concrete slab thickness as well as the pipe diameter.  

 

Figure 14.2  Radiant floor pipes (before pouring the concrete) and the schematic. 

 

Figure 14.3  Mechanical room and its schematic. 

A number of studies were carried out on the thermal characterization of the facility’s radiant floor 

system itself when exposed to exterior conditions (Candanedo et al. (2018), Saberi et al. (2018)). 

These studies were done before installing the front wall of the PZTC and only the radiant floor was 

studied and not the PZTC. The study that is presented in this document is the first experimental 

study on the PZTC and its Energy Flexibility. 
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14.2 Methodology: control strategies and implementation 

This is a simple control case study using a zone thermostat. The thermostat controls the room air 

and floor temperature for a hydronic heating zone using Pulse Width Modulation (PWM) technology 

to control the flowrate. A slab sensor is included with the thermostat to measure floor temperature to 

protect the floor from overheating and enhance comfort. In the experiment, the maximum allowable 

floor temperature is set to be 29 ºC based on the ASHRAE standard 55.  

The control of the system is based on an assumed price signal. Therefore, it is investigated how 

much flexibility can be obtained by modulating the air temperature setpoint from the baseline room 

air temperature (22 ºC) to the comfort limits of the zone (20 ºC and 24 ºC). The 

increasing/decreasing of the setpoint is done manually by entering the room and increasing the 

temperature on the thermostat, waiting for the desired period (about 6 hours) after which the 

temperature is returned to the baseline again manually – see Figure 14.4. Both setpoint increase 

and decrease from the baseline are considered to examine the upward and downward flexibility of 

the system. 

 

Figure 14.4  Implemented control strategy (zone air setpoint). 

14.3 Control algorithms 

The control strategy is based on simple increasing and decreasing of the zone temperature by 

means of the zone thermostat. The thermostat works based on pulse-width modulation of system 

flowrate. This type of control is briefly described in the following. 

A Pulse Width Modulation (PWM) Signal is a method for generating an analog signal using a digital 

source. A PWM signal consists of two main components that define its behavior: a duty cycle and a 
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frequency. The duty cycle describes the amount of time the signal is in a high (on) state as a 

percentage of the total time it takes to complete one cycle. When a digital signal is on half of the time 

and off the other half of the time, the digital signal has a duty cycle of 50 % and resembles a "square" 

wave. When a digital signal spends more time in the on state than the off state, it has a duty cycle 

of > 50 %. When a digital signal spends more time in the off state than the on state, it has a duty 

cycle of < 50 %. Figure 14.5 illustrates these three scenarios. 

 

Figure 14.5  Examples of 50 %, 75 %, and 25 % duty cycles. 

The frequency determines how fast the PWM completes a cycle (i.e. 1000 Hz would be 1000 cycles 

per second), and therefore how fast it switches between high and low states. By cycling a digital 

signal off and on at a fast-enough rate, and with a certain duty cycle, the output will appear to behave 

like a constant voltage analog signal when providing power to devices. The main advantage of PWM 

is that power loss in the switching devices is very low. When a switch is off there is practically no 

current, and when it is on and power is being transferred to the load, there is almost no voltage drop 

across the switch. Power loss, being the product of voltage and current, is thus in both cases close 

to zero. PWM also works well with digital controls, which, because of their on/off nature, can easily 

set the needed duty cycle. 

14.4 Results and conclusion 

Figure 14.6 shows the system flowrate (the moving-window-mean value) before and during the 

active demand response (ADR) event (12-18 hours and 37-43 hours), when the zone air temperature 

is modulated accordingly. As it can be observed from Figure 14.6, before hour 12 there is a steadier 

on/off to the system flowrate through pulse-width modulation in order to keep the zone temperature 

at 22 ºC. Then, between hours of 12 and 18 when the temperature is set to be increased to 24 ºC 

the controller keeps the flowrate near maximum (1 gpm) and keeps the flow running for a much 

longer period until the surface temperature gets really hot around the hour of 14.5 (see Figure 14.9) 

so the flow is stopped for about 1.5 hours. The flow is started again for another 1.5 hours (16-17.5 
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hours) and stopped at hour 18 when the setpoint is reduced to 22 ºC from 24 ºC. After 18 h it is 

observed that there is no heating power to the system for more than 4 hours. Therefore, it can be 

stated that this strategy gives a 4 hours power shifting capacity compared to the baseline heating 

power profile (constant 22 ºC zone temperature). 

 

 

Figure 14.6 Radiant floor System flowrate actual measurement (top), moving-window mean value vs room 

setpoint modulations (bottom). 
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Heating power to the radiant floor is calculated by using the flowrate (mdot), supply and return 

temperatures difference (∆T) as: 

pQ mdot C T    

For the ADR events, hours 12 to 18 and 37 to 43, the flexibility of the system is calculated. As shown 

in Figure 14.7, the upward flexibility is equal to 195 Wh/m² and the downward flexibility is 237 Wh/m². 

Also, an increase of 125 W in the heating power in the rebound effect of the downward flexibility 

(hour 43) compared to the one for the upward flexibility (hour 12) can be observed. This increase in 

heating power is due to the fact that at hour 43 no heat has been injected into the system for 6 hours. 

Therefore, a higher spike in the heating power compared to hour 12 is observed. 

 

Figure 14.7  Heating power of the radiant floor system and the upward/downward flexibility calculation. 

This setpoint modulation strategy described above can be defined and applied to a price signal as 

shown in Figure 14.8. Therefore, when there is a high price signal for a certain period of time in the 

forecast, the zone setpoint can be increased by 2 K for a certain period and then get back to the 

normal operating condition. It is observed that with this strategy the system offers about four hours 

of power shifting potential. Also, with the downward flexibility it will be possible to decrease the 

rebound effect by using a ramp profile or other transition paths for which a programmable thermostat 

is required, however.  

Figure 14.9 shows the radiant floor surface temperature as well as the zone operative temperature 

and the exterior temperature conditioned by the environmental chamber. It is observed that the 

operative temperature is within the comfort limits almost all the time. Also, it can be observed that 

when the floor temperature reaches the 29 ºC limit (around hours of 15), the controller shuts down 

the heat input by turning off the flowrate for the radiant floor. 
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Figure 14.8  Price signal.. 

 

Figure 14.9  Floor surface and operative temperatures. 
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1.4.1. Conclusion 

This report presented an experimental evaluation of Energy Flexibility potential of a radiant floor 

heating system. It was observed that by modulating the zone air temperature setpoint certain 

flexibility in energy consumption and power shifting can be obtained for the thermal zone. This 

flexibility can be utilized especially during the peak power periods to minimize the power (or energy) 

consumption of the thermal zone. 
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15 Aggregation of Energy Flexibility of 
commercial buildings 

 Anjukan Kathirgamanathan, Killian Murphy, Mattia De Rosa, Mohammad Saffari, Eleni 

Mangina and Donal Finn, University College Dublin 

 
In this study, demand response is applied through direct control to an EnergyPlus archetype 

simulation model of a large office building. Several demand response strategies are considered, 

including chiller water modulation, global setpoint modulation, fan mass flow rate modulation and the 

use of an electric battery. The study is motivated by whether the available electrical Energy Flexibility 

of the various strategies can be simply summed together and how multiple strategies interact. 

Results show that in some cases certain demand response (DR) strategies interact with each other 

and, therefore, cannot be considered in isolation, they must be simulated together. In this study, the 

adopted rule-based control is non-predictive and is unable to harness the Energy Flexibility of the 

thermal mass of the building fully to provide Energy Flexibility whilst meeting thermal comfort 

constraints.  

15.1 Building and system description 

This study uses a virtual test bed building simulated in EnergyPlus, a whole building energy 

simulation program. A virtual DR test bed building is used instead of a real case-study building in 

this case, as this allows various DR technologies to be implemented and studied in parallel. The 

testbed building is a US-DOE (United States Department of Energy) commercial building archetype 

model (Deru et al., 2011). The ‘Large Office’ building (illustrated in Figure 15.1) is specifically 

selected, as many of the DR strategies implemented in this study are relevant to large office 

buildings. The version with “new construction”, which complies with the minimum requirements of 

ASHRAE Standard 90.1-2004, is selected for climate zone 4C. The weather data used is that of 

Dublin, Ireland, the location of the virtual test bed. The large office has a floor area of 46,320 m² over 

12 floors (plus a basement). The building operates from 6.00 am to midnight on weekdays and 6.00 

am to 5.00 pm on Saturdays (with no occupancy on Sundays). The building has a ‘Mass Wall’ 

(continuous insulation) wall type based on ASHRAE Standard 90.1-2004 with a U-Value of 0.857 

W/(m² K) (Deru et al., 2011). 

This building uses a gas boiler for heating (1,766 kW), two water-cooled electric chillers for cooling 

(1,343 kW) and a multi zone variable air volume system for air distribution as illustrated in Figure 

15.2. The archetype model is modified to add a lithium ion battery to provide a means for electricity 

storage and a solar PV panel for local electricity generation. The battery is sized to have a 1.5 MWh 

storage capacity (for a two-hour duration) with 500 kW discharge. The PV array is sized to have a 

rated power output of 200 kWp. The fraction of the roof with active solar cells assumed to be 46 % 

with a solar cell efficiency of 20 % based on (Gagnon et al., 2016). 
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Floor Area 46,320 m2 

No. of Floors 12 

Wall U-value 0.857 W/(m2 K) 

Heating Gas Boiler (1,766 kW) 

Cooling Two water-cooled 

chillers (1,343 kW) 

Air Distribution Multizone variable air 

volume (MZ VAV) 

Solar PV 200 kWp output 

Electric Battery 1.5 MWh storage/ 500 

kW discharge 
 

Figure 15.1  'Large Office' US-DOE Archetype Model in EnergyPlus. 

 

Figure 15.2  Hydraulic scheme of the HVAC system including chillers, air handling units (AHU) and a boiler of 

the 'Large Office' US-DOE Archetype Model. 

A simulation time-step of 15 minutes is selected, as this is an appropriate compromise between 

modelling the fast-dynamics and the data-burden from simulating short time steps over large 

prediction horizons (Sturzenegger et al., 2016). The control scope of this case study incudes the 

entire cooling system (plant side and air side), and the battery system.  

15.2 Research aim 

Given that a commercial building is capable of providing Energy Flexibility through a range of 

mechanisms (described in the next section), it is of interest whether the total available Energy 

Flexibility can be simply summed and the question arises of what the optimal strategy or set of 
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strategies is for a given demand response event. The research questions addressed in this study 

are “Can a suitable framework be identified that considers the various demand response strategies 

are available in a commercial building? Can the various demand response strategies be aggregated 

to calculate the total flexibility that a building can offer?” The work and results presented here are 

based on the work carried out by (Kathirgamanathan et al., 2018).   

15.3 Methodology 

The overall methodology is given below: 

1. Build a white-box virtual DR testbed model using EnergyPlus. 

2. Using this virtual DR testbed model to analyze potential for demand response strategies 

(applied for hourly durations) initially for the summer design day case. 

3. Quantify the flexibility for these strategies individually and aggregate at hourly intervals using 

enhanced flexibility indicators. 

4. Create a daily flexibility profile featuring the various demand response strategies (assuming 

independent DR events at every hour and that there is only one DR event in a day for use of 

the profile). Only down-flexibility results are presented in this study. 

15.3.1 Demand response strategies 

Demand response is applied through the use of four different strategies for a summer design day to 

achieve load shifting. The four demand response strategies are detailed below. The first three 

strategies take advantage of the building thermal mass as a passive form of storage with the last 

strategy using the electric battery for active storage. In this study, the PV is not considered as a DR 

strategy. However, as it reduces the imported power, it is considered for comparison purposes. In 

all cases, DR events of a duration of one hour are considered. 

Global Setpoint Adjustment (GSA)  
The first strategy involves adjusting the global setpoint temperature (of the zonal air temperature), 

thus shifting the cooling load. There is a strong correlation between the cooling setpoint temperature 

and the cooling load, making this an effective strategy. For simplification, zone pre-conditioning is 

not considered. Operative temperature drift values given in ASHRAE 2004b Standard 55 (Thermal 

Environmental Conditions for Human Occupancy, 2004) are used in this study for temperature 

adjustment limits.  

Chiller Water Temperature (CWT) 
This strategy involves modulating the chilled water temperature setpoint in the chiller supply loop. 

The chilled water setpoint temperature is increased from 6 °C to 12 °C during the demand response 

period, thus decreasing the chiller load. For this strategy, the air flow rates are locked to the reference 

values to prevent compensation by the air handling units (AHU) during the demand response event.  

Fan Modulation (Fan) 
The third strategy is to modulate the fan mass flow rate (or fan speed) and in this case, the flow rate 

is modulated to 20 % of the reference value. The mass flow rates of the cooling loop are also 

modulated to prevent compensation. For this strategy, however, minimum ventilation requirements 

need to be satisfied. 
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Electric Battery (Bat) 
The fourth and final strategy involves the battery to shift consumption from the grid (active electric 

storage). Note that in this research, the PV and battery are considered as separate systems although 

future work will consider them as a coupled system providing Energy Flexibility with the battery only 

charging from the PV output. In this case study, only the provision of down flexibility (a reduction in 

the power imported from the grid compared to the reference) is considered. 

15.3.2 Flexibility indicators 

To quantify the amount of flexibility available, the “Available Electrical Energy Flexibility” or AEEF is 

defined as follows: 

𝐴𝐸𝐸𝐹 = ∫ |𝑃𝑗
𝑓𝑙𝑒𝑥

− 𝑃𝑗
𝑟𝑒𝑓
|𝑑𝑡

𝑙𝐷𝑅

𝑗

 (15.1) 

where lDR is the duration of the demand response event, Pj
flex is the power consumption during the 

demand response event and Pj
ref is the power consumption in the reference control case. This 

indicator is based on (Reynders, 2015) with the key difference being that the difference in power 

consumption is used rather than the thermal heating or cooling loads. 

As the thermal mass of the building is essentially used as a form of energy storage when applying 

demand shifting through the demand response strategies used in this study, a storage efficiency 

(ηAEEF) is defined next. This is defined differently based on whether up-flexibility or down-flexibility is 

considered. For down-flexibility, a rebound effect is expected following the period of demand 

response and hence the efficiency is a measure of the magnitude of the rebound effect over the 

amount of energy shifted. For down-flexibility, the efficiency is defined as: 

𝜂𝐴𝐸𝐸𝐹  (𝑑𝑜𝑤𝑛 − 𝑓𝑙𝑒𝑥) = 1 −
∫ (𝑃𝑓𝑙𝑒𝑥 − 𝑃𝑟𝑒𝑓)+𝑑𝑡
ℎ𝑜𝑟

0

|∫ (𝑃𝑓𝑙𝑒𝑥 − 𝑃𝑟𝑒𝑓)−𝑑𝑡
ℎ𝑜𝑟

0
|
 (15.2) 

For up-flexibility, the definition is as follows: 

𝜂𝐴𝐸𝐸𝐹  (𝑢𝑝 − 𝑓𝑙𝑒𝑥) =
|∫ (𝑃𝑓𝑙𝑒𝑥 − 𝑃𝑟𝑒𝑓)−𝑑𝑡
ℎ𝑜𝑟

0
|

∫ (𝑃𝑓𝑙𝑒𝑥 − 𝑃𝑟𝑒𝑓)+𝑑𝑡
ℎ𝑜𝑟

0

 (15.3) 

For the Energy Flexibility provided by batteries, equation (3) is applicable to both down and up 

flexibility. For more information on the derivation and implementation of these Energy Flexibility 

indicators, refer to (Kathirgamanathan et al., 2018). 

15.4 Implementation: control algorithms 

The reference control strategy employed by this building is rule-based control (RBC). The 

temperature of the zones is controlled through a dual setpoint thermostat, one for cooling and one 
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for heating. This is achieved through a combination of low-level and high-level control objects. Low-

level controls are meant to simulate certain closed-loop hardware controls that have very specific 

functions to perform. An example includes the ZONE CONTROL:THERMOSTATIC object which 

provides basic thermostatic control for zone heating and cooling. On the contrary, high-level controls 

control the operation of large parts of the system and can coordinate control of the air system and 

the plant system. Examples of high-level controls include setpoint managers and system availability 

managers. High-level control decisions are simulated once per system time step. Control decisions 

are made based on the conditions in the previous time step. Demand response actions are simulated 

through the use of the Energy Management System (EMS) module of EnergyPlus using the 

EnergyPlus runtime language (ERL). See Figure 15.3 and (Ellis, Torcellini and Crawley, 2007) for 

further details. This case study uses a form of direct load control for demand response. 

 
Figure 15.3  Overview of Energy Management System in EnergyPlus (DesignBuilder, 2012.). 

The EMS is used to apply DR actions at every hour of the day for the summer design day for each 

strategy – i.e. one simulation for each DR event. Actuator objects are used to modulate the control 

variables such as cooling setpoint for the GSA strategy, cooling loop setpoint for the CWT strategy, 

fan flow rate setpoint for the fan modulation strategy and battery discharge rate for the battery 

strategy. The performance of each strategy is quantified by comparing the total power demand and 

occupant comfort (through the zonal Fanger Predicted Mean Vote (PMV)) against the reference case 

where no DR is applied. A PMV value of between -1 and 1 is considered to be acceptable thermal 

comfort. Note that the reference scenario is not optimal with regards to energy demand or cost as is 

commonly found in many studies and other case studies.  

15.5 Results and conclusion 

The daily profiles of the available electrical Energy Flexibility for all the DR strategies is shown in 

Figure 15.4 as a carpet plot. As this figure shows, the available electrical Energy Flexibility is limited 

during the unoccupied hours due to the lower total building power demand. DR strategies modulating 

the HVAC system are only able to provide Energy Flexibility during the occupied hours when the 

chiller and fan are operating. The battery provides the largest quantity of Energy Flexibility, i.e. a 

consistent amount of 460 kWh. The efficiency of the DR strategies is illustrated next in Figure 15.5 

similarly in a carpet plot. Again, the battery efficiency is constant around a value of 60-70 % and is 

due to a combination of charging, discharging and inverter losses. The efficiency of the fan strategy 



 

149 

 

dips during the middle of the day when a larger rebound is to be expected given the higher internal 

and solar gains during this period. Given both the quantity and efficiency of a certain DR action, a 

priority list can be constructed for every hour of the day ranking the strategies, allowing a building 

operator to act given a demand response event. Where the Energy Flexibility requested is greater 

than the amount able to be provided by any individual strategy, a combination may have to be used 

and this is investigated below. 

Generally, a rebound effect is to be expected following a demand response event as the systems 

have to recover to the steady state operating conditions. However, given that the reference control 

is rule-based, there are some cases with the DR strategies studied where either no rebound effect 

is seen following the DR event or even where further load reductions occur following the DR event 

(e.g. Figure 15.6). This leads to an efficiency of greater than 100% in certain cases. This behaviour 

is not expected with optimal energy control as the reference case.  

 

Figure 15.4  Available Electrical Energy Flexibility for all DR strategies for summer design day. 

The chilled water temperature and global setpoint strategies are capable of being combined together. 

The combined available electrical Energy Flexibility (CWT + GSA (2) - through simulation) is 

compared with the summation of the individual flexibility values (CWT + GSA (1)) from each of the 

respective strategies in Figure 15.7. Results show that the simple summation of the available 

electrical Energy Flexibility is not the same as the case when they are applied together in the 

simulation.  

The maximal Energy Flexibility is achieved in this building through a combination of the battery, 

modulating the fan and the output from the PV. This is illustrated in Figure  for the summer design 

day. The building is capable of delivering almost 1000 kWh f Energy Flexibility to the grid between 

3.00 pm and 4.00 pm. Note that this is highly sensitive to the control scheme used in the reference 

case and the results would be expected to be different if the reference scheme was an energy optimal 

model predictive control for example.  
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Figure 15.5  ηAEEF – all DR Strategies (Down Flex) – Daily Profile. 

 

Figure 15.6  Difference in the power demand with the reference case for global setpoint adjustment DR 

strategy with DR event at 6 am. 

In conclusion, the methodology presented in this case study is able to capture the Energy Flexibility 

available from various demand response strategies available in a building, both individually and in 

aggregation. A limitation is that comfort constraints are not implicit in the control formulation and 

these have to be accounted for manually, e.g. through the experience of a building operator. A further 

limitation is that the profiles presented are only applicable in the case of one DR event during a 24-

hour period. The provision of Energy Flexibility would affect the available Energy Flexibility in the 

following hours. Generally, given that a predictive control scheme (such as MPC) is capable of taking 

full advantage of the thermal mass of the building as well as respecting constraints, it is expected 

that this should give a more complete picture of the Energy Flexibility available and the associated 



 

151 

 

cost in a given building. The methodology used in this study can be extended to obtain a profile of 

the available Energy Flexibility and associated efficiency over a longer period as required for 

operation or even a year for early-stage Energy Flexibility assessment of a building 

 

Note: CWT + GSA (1) – individual sum (mutually exclusive) 

CWT + GSA (2) – combined smulation (mutually inclusive) 

Figure 15.7  Aggregation of CWT & GSA DR Strategies & Comparison with Fan Modulation DR Strategy. 

15.6 Conclusion 

The results and lessons learned from the case studies are very specific for each case. The results 

from investigations apply different boundary conditions (weather, energy prices, etc.) and constrains 

(use of buildings, comfort range, etc.) so the results may differ between the examples or even 

contradict in some cases. 

Since buildings are unpredictable consumers of electrical energy, optimal control strategies is a key 

technology in next-generation energy-efficient building systems. However the case studies show that 

traditional control strategies are still being used in most of the buildings subsystems even with the 

development of better alternatives presented over the past years. In addition, the majority of studies 

focus on independent components of the building rather than building-wide optimization, neglecting 

the potential efficiency improvements to be exploited for the entire system in order to achieve 

significant energy savings. 

 



 

152 

 

 

Figure 15.8  Aggregated Available Electrical Energy Flexibility for case study building for summer design day.  

Furthermore, the building-wide optimization is a non-linear and multivariate problem having no 

unique solution where competitive objectives arise in practice, involving interdependent issues 

distributed among multiple building climate zones. In this way, the coordinated operation of 

interconnected subsystems performing autonomous control is essential to achieve the overall 

system goals. 

In this context, where the control process of buildings should be optimized, there is a need to seek 

new methods and technologies that provide fast and optimized management and control. 

Appropriate methods must be efficient and robust, performing inter-context considerations among 

each building zone micro-climate and ensuring reliability and security in several operating conditions 

of the system. 
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